FAIRCHILD

SEMICONDUCTOR®

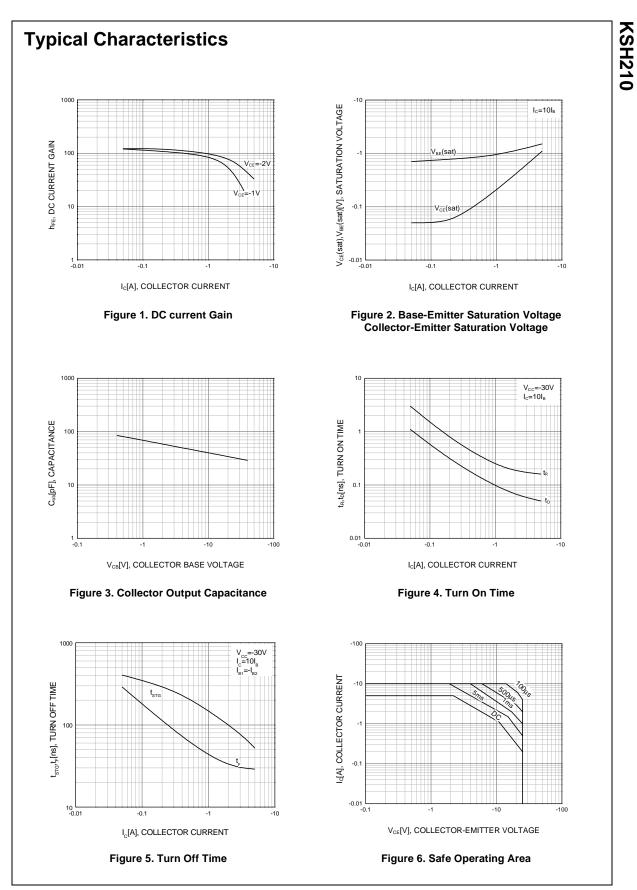
KSH210

D-PAK for Surface Mount Applications

- High DC Current Gain
- Low Collector Emitter Saturation Voltage
- Lead Formed for Surface Mount Applications (No Suffix)
- Straight Lead (I-PAK, " I " Suffix)

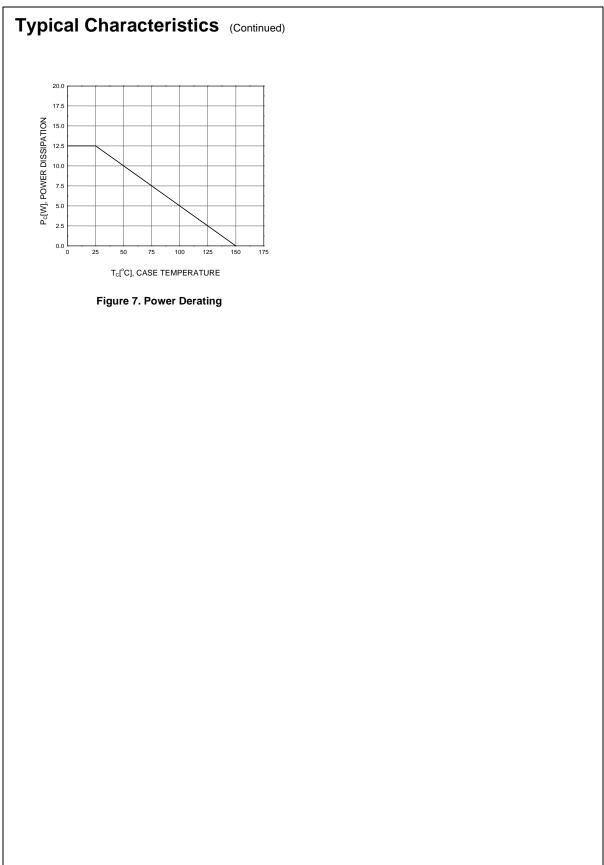
PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings T_C=25°C unless otherwise noted

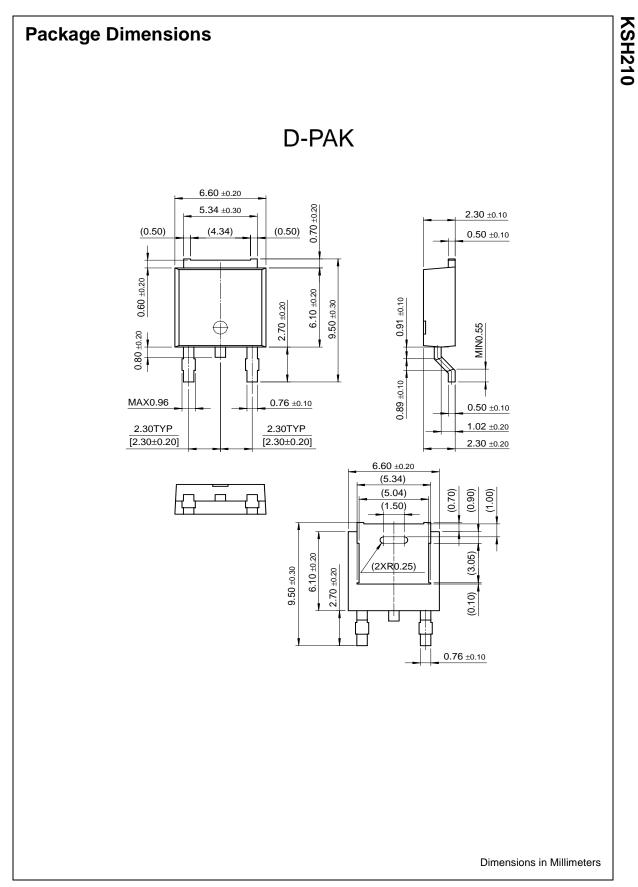

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	- 40	V
V _{CEO}	Collector-Emitter Voltage	- 25	V
V _{EBO}	Emitter-Base Voltage	- 8	V
I _C	Collector Current (DC)	- 5	А
I _{CP}	Collector Peck Current (Pulse)	- 10	А
I _B	Base Current	- 1	А
P _C	Collector Dissipation ($T_C = 25^{\circ}C$)	12.5	W
	Collector Dissipation ($T_a = 25^{\circ}C$)	1.4	W
Т _Ј	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 65 ~ 150	°C

Electrical Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
V _{CEO} (sus)	* Collector-Emitter Sustaining Voltage	I _C = - 10mA, I _B = 0	-25		V
I _{CBO}	Collector Cut-off Current	$V_{CB} = -40V, I_E = 0$		-100	nA
I _{EBO}	Emitter Cut-off Current	$V_{EBO} = -8V, I_{C} = 0$		-100	nA
h _{FE}	* DC Current Gain	$V_{CE} = -1V, I_C = -500mA$ $V_{CE} = -1V, I_C = -2A$	70 45	180	
		$V_{CE} = -2V, I_{C} = -5A$	10		
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	$I_{C} = -500$ mA, $I_{B} = -50$ mA $I_{C} = -2A$, $I_{B} = -200$ mA $I_{C} = -5A$, $I_{B} = -1A$		-0.3 -0.75 -1.8	V V V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C = - 5A, I _B = - 1A		-2.5	V
V _{BE} (on)	* Base-Emitter On Voltage	V _{CE} = - 1V, I _C = - 2A		-1.6	V
f _T	Current Gain Bandwidth Product	V _{CE} = - 10V, I _C = - 100mA	65		MHz
C _{ob}	Output Capacitance	V _{CB} = - 10V, I _E = 0, f = 0.1MHz		120	pF


* Pulse Test: PW≤300µs, Duty Cycle≤2%

KSH210



©2002 Fairchild Semiconductor Corporation

Rev. A4, October 2002

KSH210

Rev. A4, October 2002

©2002 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: KSH210TM KSH210TF