

Is Now Part of

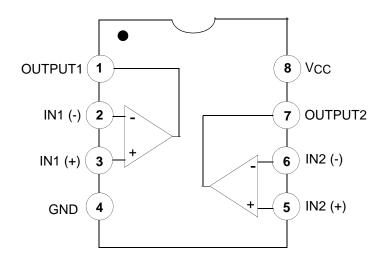
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

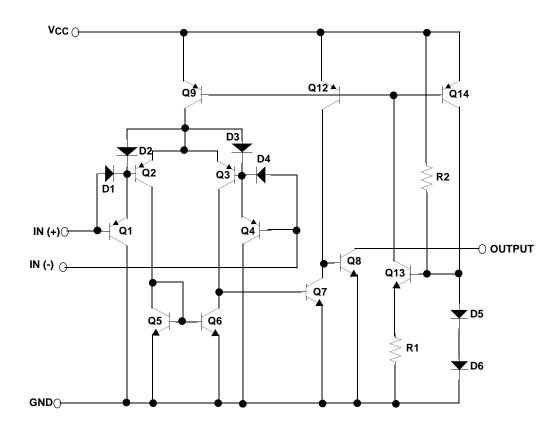
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

LM2903,LM393/LM393A,LM293A Dual Differential Comparator

Features


- Single Supply Operation: 2V to 36V
- Dual Supply Operation: $\pm 1V$ to $\pm 18V$
- Allow Comparison of Voltages Near Ground Potential
- Low Current Drain 800µA Typ.
- Compatible with all Forms of Logic
- Low Input Bias Current 25nA Typ.
- Low Input Offset Current $\pm 5nA$ Typ.
- Low Offset Voltage ±1mV Typ.

Description


The LM2903, LM393/LM393A, LM293A consist of two independent voltage comparators designed to operate from a single power supply over a wide voltage range.

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Power Supply Voltage	Vcc	±18 or 36	V	
Differential Input Voltage	VI(DIFF)	36	V	
Input Voltage	VI	-0.3 to +36	V	
Output Short Circuit to GND	-	Continuous	-	
Power Dissipation, T _a = 25°C 8-DIP 8-SOIC	PD	1040 480	mW	
Operating Temperature LM393/LM393A LM2903 LM293A	TOPR	0 ~ +70 -40 ~ +105 -25 ~ +85	°C	
Storage Temperature	T _{STG}	-65 ~ +150	°C	

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 8-DIP 8-SOIC	R _{θja}	120 260	°C/W

Electrical Characteristics

(V_{CC} = 5V, T_A = 25°C, unless otherwise specified)

Deremeter	Symbol	Conditions		LM293A/LM393A			LM393			Unit	
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
Input Offset VIO	Vio	VO(P) =1.4V, RS	$S = 0\Omega$	-	±1	±2	-	±1	±5	mV	
Voltage	VIO	VCM= 0 to 1.5V	Note1	-	-	±4.0	-	-	±9.0		
Input Offset Current	lio			-	±5	±50	-	±5	±50	nA	
Input Onset Current	ΠŪ		Note1	-	-	±150	-	-	±150		
Input Bias Current				-	65	250	-	65	250	n۸	
Input bias Current	IBIAS		Note1	-	-	400	-	-	400	nA	
Input Common Mode	VI(R)			0	-	Vcc -1.5	0	-	VCC -1.5	V	
Voltage Range			Note1	0	-	VCC-2	0	-	Vcc-2		
Supply Current	ICC	$R_L = \infty$, $V_{CC} = 5V$		-	0.6	1	-	0.6	1	mA	
Supply Current		RL = ∞, VCC = 30V		-	0.8	2.5	-	0.8	2.5		
Voltage Gain	Gv	VCC =15V, $RL \ge 15k\Omega$ (for large VO(P-P)swing)		50	200	-	50	200	-	V/mV	
Large Signal Response Time	T _{LRES}	$V_I = TTL Logic Swing$ $V_{REF} = 1.4V, V_{RL} = 5V,$ $R_L = 5.1k\Omega$		-	350	-	-	350	-	nS	
Response Time	TRES	V _{RL} =5V, R _L =5.1kΩ		-	1.4	-	-	1.4	-	μS	
Output Sink Current	ISINK	$ \begin{array}{l} VI(\textbf{-}) \geq 1V, \ VI(\textbf{+}) = 0V, \\ VO(P) \leq 1.5V \end{array} $		6	18	-	6	18	-	mA	
Output Saturation	VSAT	VI(-) ≥ 1V, VI(+)	= 0V	-	160	400	-	160	400	mV	
Voltage		ISINK = 4mA	Note1	-	-	700	-	-	700	111V	
Output Leakage		$V_{I(-)} = 0V,$	VO(P) = 5V	-	0.1	-	-	0.1	-	nA	
Current	lo(lkg)	$V_{I(+)} = 1V$ $V_{O(P)} = 30V$		-	-	1.0	-	-	1.0	μΑ	

Note1

 $\label{eq:lm290} \begin{array}{l} LM393/LM393A: \ 0 \leq T_A \leq +70^{\circ}C \\ LM2903: \ -40 \leq T_A \leq +105^{\circ}C \\ LM293A: \ -25 \leq T_A \leq +85^{\circ}C \end{array}$

Electrical Characteristics (Continued)

(V_{CC} = 5V, T_A = 25°C, unless otherwise specified)

Deremeter	Symbol	Conditions		LM2903			Unit	
Parameter	Symbol Conditions		lions	Min.	Тур.	Max.	Unit	
Input Offset Voltage	Vio	VO(P) =1.4V, RS = 0	-	±1	±7	mV		
input Onset voltage	VI0	VCM= 0 to 1.5V	Note1	-	±9	±15	mv	
Input Offset Current	lio	· ·		-	±5	±50	۳Å	
	10		Note1	-	±50	±200	nA	
In part Ding Oursent	1		- 65 25		250	۳٨		
Input Bias Current	IBIAS		Note1	-	-	500	nA	
Input Common Mode	VI(R)			0	-	Vcc -1.5	V	
Voltage Range			Note1	0	-	VCC-2		
Supply Current	ICC	$R_L = \infty$, $V_{CC} = 5V$		-	0.6	1	mA	
		RL = ∞, VCC = 30V	-	1	2.5	ША		
Voltage Gain	Gv	VCC =15V, RL≥15kΩ (for large VO(P-P)swing)		25	100	-	V/mV	
Large Signal Response Time	TLRES	VI =TTL Logic Swing VREF =1.4V, VRL = 5V, RL = 5.1k Ω		-	350	-	nS	
Response Time	TRES	$V_{RL} = 5V, R_L = 5.1k\Omega$		-	1.5	-	μS	
Output Sink Current	ISINK	$VI(\textbf{-}) \geq 1V, \ VI(\textbf{+}) = 0V, \ VO(P) \leq 1.5V$		6	16	-	mA	
Output Caturation Valtage	VSAT	$V_{I(-)} \ge 1V, V_{I(+)} = 0V$		-	160	400	mV	
Output Saturation Voltage		ISINK = 4mA	Note1	-	-	700		
Output Leakage Current	IO(LKG)	VI(-) = 0V,	VO(P) = 5V	-	0.1	-	nA	
Output Leakage Outfell		VI(+) = 1V VO(P) = 30V		-	-	1.0	μA	

Note1

 $\label{eq:LM393} \begin{array}{l} LM393/LM393A: \ 0 \leq T_A \leq +70^\circ C \\ LM2903: \ -40 \leq T_A \leq +105^\circ C \\ LM293A: \ -25 \leq T_A \leq +85^\circ C \end{array}$

Typical Performance Characteristics

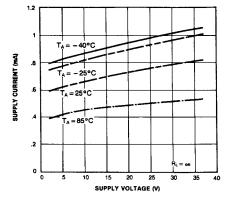


Figure 1. Supply Current vs Supply Voltage

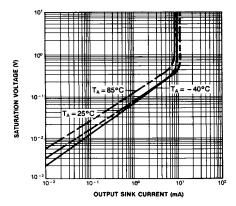


Figure 3. Output Saturation Voltage vs Sink Current

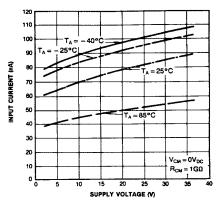


Figure 2. Input Current vs Supply Voltage

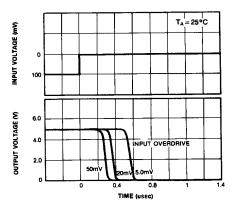


Figure 4. Response Time for Various Input Overdrive-Negative Transition

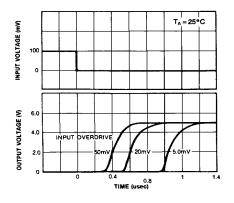
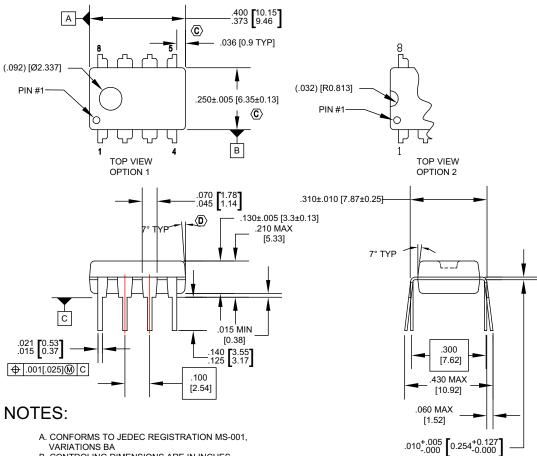



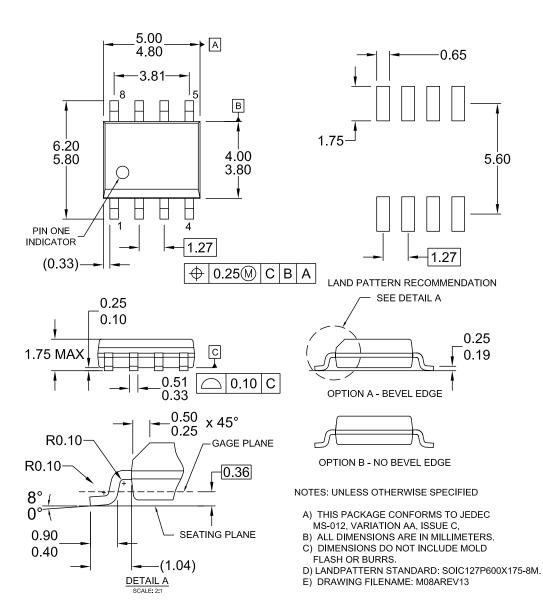
Figure 5. Response Time for Various Input Overdrive-Positive Transition

Mechanical Dimensions

Package

Dimensions in millimeters

- VARIATIONS BA
- B. CONTROLING DIMENSIONS ARE IN INCHES REFERENCE DIMENSIONS ARE IN MILLIMETERS CODES NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCHES OR 0.25MM.
- DAMBAR PROTRUSIONS SHALL NOT EXCEED .010 INCHES OR 0.25MM. E. DIMENSIONING AND TOLERANCING
- PER ASME Y14.5M-1994.


N08EREVG

8-DIP

Dimensions in millimeters

Mechanical Dimensions (Continued)

Package

8-SOIC

Ordering Information

Product Number	Operating Temperature	Package	Packing Method
LM393N		8-DIP	Rail
LM393AN		0-DIP	Rail
LM393M	0 ~ +70°C		Rail
LM393MX	0~+70°C	8-SOIC	Tape & Reel
LM393AM		8-3010	Rail
LM393AMX			Tape & Reel
LM2903N		8-DIP	Rail
LM2903M	-40 ~ +105°C	8-SOIC	Rail
LM2903MX		0-SOIC	Tape & Reel
LM293AN	-25 ~ +85°C	8-DIP	Rail

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: