

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

2N5086/2N5087/MMBT5087

PNP General Purpose Amplifier

• This device is designed for low level, high gain, low noise general purpose amplifier applications at collector currents to 50mA.

1. Emitter 2. Base 3. Collector

1. Base 2. Emitter 3. Collector

Absolute Maximum Ratings* T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	-50	V
V _{CBO}	Collector-Base Voltage	-50	V
V _{EBO}	Emitter-Base Voltage	-3.0	V
I _C	Collector current - Continuous	-100	mA
T _J , T _{stg}	Junction and Storage Temperature	-55 ~ +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition		Min.	Max.	Units
Off Charac	teristics					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage *	$I_C = -1.0 \text{mA}, I_B = 0$		-50		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = -100 \mu A, I_E = 0$		-50		V
I _{CEO}	Collector Cutoff Current	$V_{CB} = -10V, I_{E} = 0$			-10	nA
		$V_{CB} = -35V, I_{E} = 0$			-50	nA
I _{CBO}	Emitter Cutoff Current	$V_{EB} = -3.0V, I_{C} = 0$			-50	nA
On Charac	teristics					
h _{FE}	DC Current Gain	$I_C = -100 \mu A, V_{CE} = -5.0 V$	5086	150	500	
			5087	250	800	
		$I_C = -1.0 \text{mA}, V_{CE} = -5.0 \text{V}$	5086	150		
			5087	250		
		$I_C = -10 \text{mA}, V_{CE} = -5.0 \text{V}$	5086	150		
			5087	250		
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_C = -10 \text{mA}, I_B = -1.0 \text{mA}$			-0.3	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = -1.0 \text{mA}, V_{CE} = -5.0 \text{V}$			-0.85	V
	al Characteristics					
f _T	Current Gain Bandwidth Product	$I_C = -500\mu A$, $V_{CE} = -5.0V$, $f = 20MHz$		40		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = -5.0V, I_{E} = 0, f = 100KHz$			4.0	pF
h _{fe}	Small-Signal Current Gain	$I_C = -1.0 \text{mA}, V_{CE} = -5.0 \text{V},$	5086	150	600	
		f = 1.0KHz	5087	250	900	
NF	Noise Figure	$I_C = -100 \mu A, V_{CE} = -5.0 V$	5086		3.0	dB
		$R_S = 3.0k\Omega$, $f = 1.0KHz$	5087		2.0	dB
		$I_C = -20\mu A$, $V_{CE} = -5.0V$	5086		3.0	dB
		$R_S = 10k\Omega$	5087		2.0	dB
		f = 10Hz to 15.7KHz				

TI	Ol (! - (!	
ınermai	Characteristics	T _a =25°C unless otherwise noted

		Ma			
Symbol	Parameter	2N5086 2N5087	*MMBT5087	Units	
P _D	Total Device Dissipation	625	350	mW	
	Derate above 25°C	5.0	2.8	mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W	

^{*} Device mounted on FR-4 PCB 1.6" × 1.6" × 0.06."

Typical Characteristics

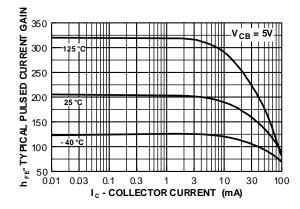


Figure 1. Typical Pulsed Current Gain vs Collector Current

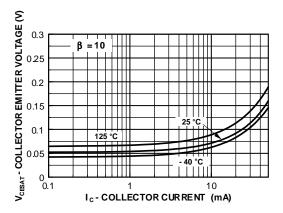


Figure 2. Collector-Emitter Saturation Voltage vs Collector Current

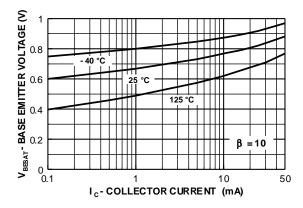


Figure 3. Base-Emitter Saturation Voltage vs Collector Current

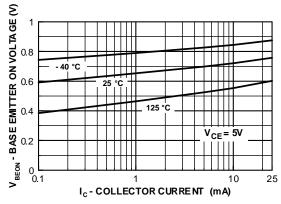


Figure 4. Base-Emitter On Voltage vs Collector Current

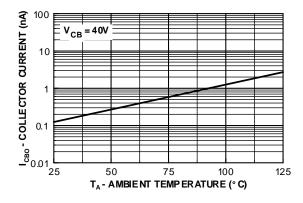


Figure 5. Collector Cutoff Current vs Ambient Temperature

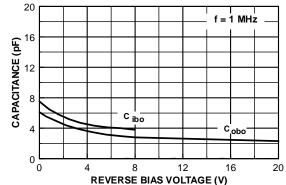


Figure 6. Input and Output Capacitance vs Reverse Voltag

©2003 Fairchild Semiconductor Corporation

Typical Characteristics(Continuce)

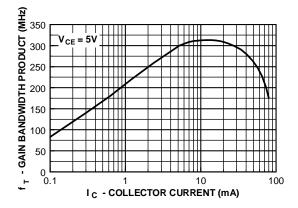


Figure 7. Gain Bandwidth Product vs Collector Current

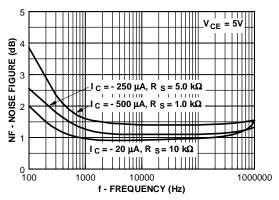


Figure 8. Noise Figure vs Frequency

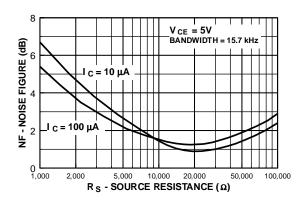


Figure 9. Wideband Noise Frequency vs Source Resistance

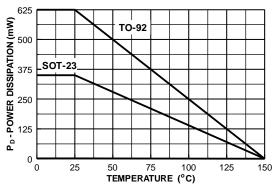


Figure 10. Power Dissipation vs Ambient Temperature

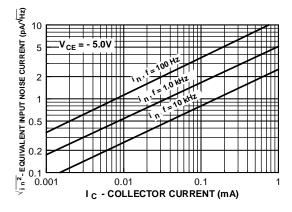


Figure 11. Equivalent Input Noise Current vs Collector Current

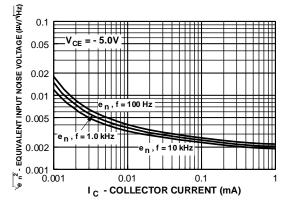


Figure 12. Equivalent Input Noise Voltage vs Collector Current

©2003 Fairchild Semiconductor Corporation Rev. B1, September 2003

Typical Characteristics (Continuce)

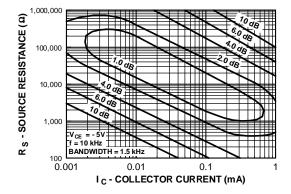


Figure 13. Contours of Constanct Narrow Band Noise Figure

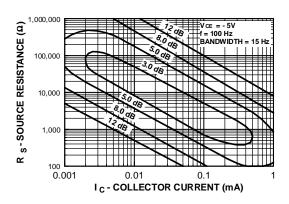


Figure 14. Contours of Constanct Narrow Band Noise Figure

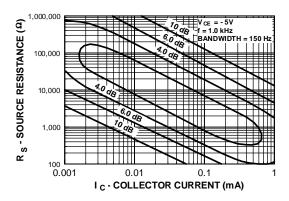


Figure 15. BContours of Constant Narrow Band Noise Figure

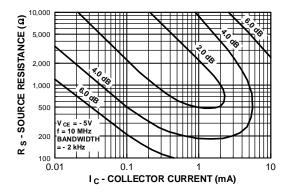
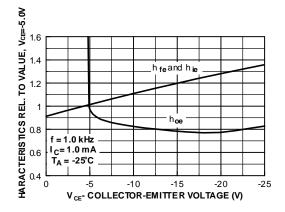
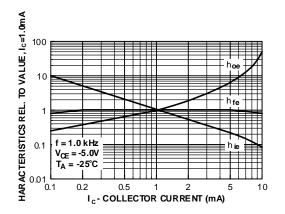
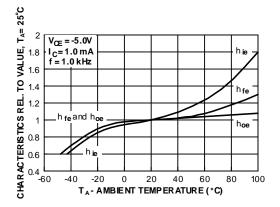
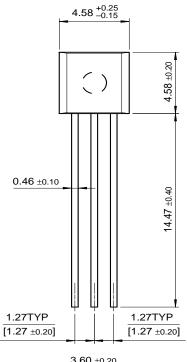
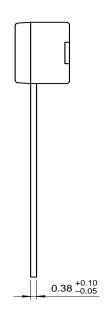




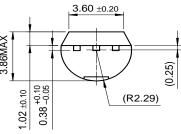
Figure 16. Contours of Constant Narrow Band Noisd Figure


Typical Common Emitter Characteristics (f = 1.0KHz)

Typical Common Emitter Characteristics

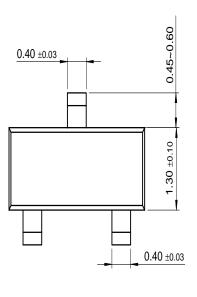

Typical Common Emitter Characteristics

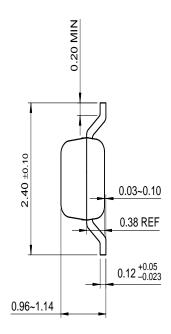


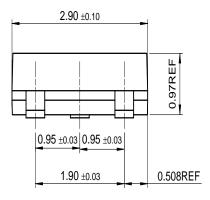

Typical Common Emitter Characteristics

Package Dimensions

TO-92







Package Dimensions (Continued)

SOT-23

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FACT Quiet Series TM FAST [®] FASTr TM FRFET TM GlobalOptoisolator TM GTO TM HiSeC TM ImpliedDisconnect TM ISOPLANAR TM Around the world. TM	LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXPROTM OPTOLOGIC® OPTOPLANARTM PACMANTM	Power247 TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM SILENT SWITCHER [®] SMART START TM SPM TM Stealth TM	SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM
The Power Franch Programmable Ac	nise™		.	
· · · · · · · · · · · · · · · · · · ·				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2003 Fairchild Semiconductor Corporation Rev.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: MMBT5087 MMBT5087_Q