

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

September 2013

NC7SZ66 Low Voltage Single SPST Normally Open Bus Switch

Features

- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Rail-to-Rail Signal Handling
- Power Down High-Impedance Inputs/Outputs
- 5 Ω Switch Connection between Two Ports
- Minimal Propagation Delay through the Switch
- Low I_{CC}
- Zero Bounce in Flow-Through Mode
- Control Input Compatible with CMOS Input Levels
- Ultra-Small MicroPak™ Packages
- Space-Saving SOT23 and SC70 Packages

Description

The NC7SZ66 is a ultra high-speed (UHS) CMOS compatible single-pole/single-throw (SPST) bus switch. The LOW on resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1-bit switch with a switch enable (OE) signal. When OE is HIGH, the switch is on and port A is connected to port B. When OE is LOW, the switch is open and a high-impedance state exists between the two ports..

Ordering Information

Part Number	Top Mark	Package	Packing Method
NC7SZ66M5X	7Z66	5-Lead SOT23, JEDEC MO-178 1.6 mm	3000 Units on Tape & Reel
NC7SZ66P5X	Z66	5-Lead SC70, EIAJ SC-88a, 1.25 mm Wide	3000 Units on Tape & Reel
NC7SZ66L6X	EE	6-Lead, MicroPak™, 1x1 mm Wide	5000 Units on Tape & Reel

Connection Diagrams

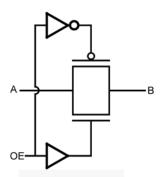
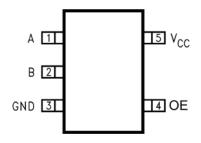



Figure 1. Logic Symbol

Pin Configurations

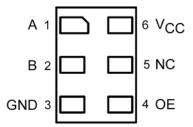


Figure 3. MicroPak™ (Top Through View)

Pin Definitions

Pin # SC70 / SOT23	Pin # MicroPak™	Name	Description
1	1	A	Bus A I/O
2	2	В	Bus B I/O
3	3	GND	Ground
4	4	OE	Switch Enable Input
5	6	V _{CC}	Supply Voltage
	5	NC	No Connect

Function Table

OE	B ₀	Function
L	High Z-State	Disconnected
Н	A ₀	Connect

H = HIGH Logic Level

L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parai	meter	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	7.0	V
Vs	DC Switch Voltage ⁽¹⁾		-0.5	V _{CC} to 0.5	V
V _{IN}	DC Input Voltage		-0.5	7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V		-50	mA
I _{OUT}	DC Output Sink Current			128	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current			±100	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
T _J	Junction Temperature Under Bia	IS		+150	°C
TL	Junction Lead Temperature (Sol	dering, 10 Seconds)		+260	°C
Б	Davier Dissipation at 1959C	SOT-23		200	\^/
P _D	Power Dissipation at +85°C	SC70-5		150	mW
ECD.	Human Body Model, JEDEC:JESD22-A114			4000	V
ESD	Charge Device Model: JEDEC:J	ESD22-C101		1500	V

Note:

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit	
V _{CC}	Supply Voltage Operating		1.65	5.50	V	
V _{IN}	Input Voltage		0	5.5	V	
Vs	Switch Input Voltage		0	V _{CC}	V	
V _{OUT}	Output Voltage		0	V _{CC}	V	
		V _{CC} =2.3 V - 3.6 V	0	10		
t _r , t _f	Input Rise and Fall Times	V _{CC} =4.5 V – 5.5 V	0	5	ns/V	
1		Switching I/O	0	DC		
T _A	Operating Temperature		-40	+85	°C	
0	Thermal Resistance	SOT-23		300	°C ///	
θ_{JA}	Thermal Resistance	SC70-5		425	°C/W	

Note:

2. Unused inputs must be held HIGH or LOW; they may not float.

The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

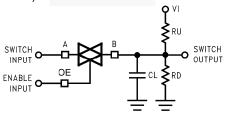
DC Electrical Characteristics

All typical values are at the specified V_{CC} , and $T_A = 25^{\circ}C$.

0	D	.,	0 1111	T _A =-40 to +85°C T _A =+25°C		11			
Symbol	ool Parameter V _{cc}		Conditions	Min.	Тур.	Max.	Min.	Тур.	Units
	HIGH Level	1.65 to 1.95		0.75 V _{CC}					.,
V _{IH}	Input Voltage	2.30 to 5.50		0.7 V _{CC}					V
V _{IL}	LOW Level	1.65 to 1.95				0.25 V _{CC}			\ \ \
VIL	Input Voltage	2.30 to 5.50				0.3 V _{CC}			V
I _{IN}	Control Input Leakage Current	0 to 5.5	$0 \le V_{IN} \le 5.5 \text{ V}$		±0.05	±1.00			μA
l _{OFF}	Off Leakage Current	1.65 to 5.50	0 ≤ A, B ≤ V _{CC}		±0.05	±10.00			μA
			V_{IN} =0 V, I_{IN} =30 mA		3	7			
		4.5	V_{IN} =2.4 V, I_{IN} =15 mA		5	12			
	Outtak Ou		V _{IN} =4.5 V, I _{IN} =30 mA		7	15			
		3.0	V _{IN} =0 V, I _{IN} =24 mA		4	9			
R _{ON}	Switch On Resistance ⁽³⁾	3.0	$V_{IN}=3 V$, $I_{IN}=24 mA$		10	20			Ω
		2.30	V _{IN} =0 V, I _{IN} =8 mA		5	12			
		2.50	V_{IN} =2.3 V, I_{IN} =8 mA		13	30			
		1.8	V _{IN} =0 V, I _{IN} =4 mA		7	28			
4		1.0	V _{IN} =1.8 V, I _{IN} =4 mA		25	60			
		5.0	I_A =-30 mA, $0 \le V_{Bn} \le V_{CC}$					6	
D	On Resistance	3.3	$I_A = -24 \text{ mA},$ $0 \le V_{Bn} \le V_{CC}$					12	
R _{flat}	Flatness (3,4,5)	2.5	$I_{A}\text{=-8mA}, \\ 0 \le V_{Bn} \le V_{CC}$					28	Ω
		1.8	$I_{A}\text{=-4 mA}, \\ 0 \leq V_{Bn} \leq V_{CC}$					125	
I _{cc}	Quiescent Supply Current	1.65 to 5.50	$V_{IN}=V_{CC}$ or GND, $I_{OUT}=0$		0.05	10.00			μA

Notes:

- 3. Measured by the voltage drop between pins A and B at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
- 4. Parameter is characterized but not tested in production.
- 5. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.


AC Electrical Characteristics

All typical values are at the specified V_{CC} , and $T_A = 25^{\circ}C$.

Symbol	Parameter	V _{cc}	Conditions	T_A =-40 to +85°C, C_L =50Pf. RU=RD=500 Ω		C _L =50Pf.		Figure
				Min.	Тур.	Max.		
		1.65 to 1.95				4.3		
	Propagation Delay	2.3 to 2.7	V _{IN} =0PEN			1.2	20	Figure 5
t _{PHL} , t _{PLH}	Bus-to-Bus ⁽⁶⁾	3.0 to 3.6	VINEUPEIN			0.8	ns	Figure 6
		4.5 to 5.5				0.3		
		1.65 to 1.95		1.5	7.0	14.2		
	Output Enable Time	2.3 to 2.7	$V_{IN}=2 \times V_{CC}$ for t_{PZL} ,	1.5	3.3	7.0	200	Figure 5
t_{PZL}, t_{PZH}	Output Enable Time	3.0 to 3.6	V _{IN} =0 V for t _{PZH}	1.5	2.4	5.5	ns	Figure 6
		4.5 to 5.5		1.5	2.0	4.5		
	/	1.65 to 1.95		1.5	9.2	18.2		
	Output Disable Time	2.3 to 2.7	$V_{IN}=2 \times V_{CC}$ for t_{PLZ} ,	1.5	5.3	9.0		Figure 5
t_{PLZ}, t_{PHZ}	Output Disable Time	3.0 to 3.6	V _{IN} =0 V for t _{PHZ}	1.5	4.0	7.0	ns	Figure 6
		4.5 to 5.5		1.5	2.7	5.0		
C _{IN}	Control Pin Input Capacitance		V _{CC} =0		2		pF	
C _{I/O}	Input / Output Capacitance		V _{CC} =05.0 V		6		pF	

Note:

6. This parameter is guaranteed by design but is not tested. The switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Notes:

- 7. Input driven by 50 Ω ; source terminated in 50 Ω .
- 8. C_L includes load and stray capacitance.
- 9. Input PRR=1.0 MHz; t_w =500 ns.

Figure 4. AC Test Circuit

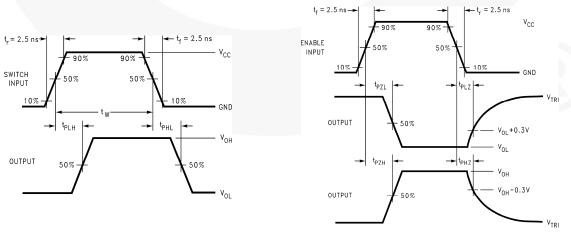


Figure 5. AC Waveforms

Physical Dimensions

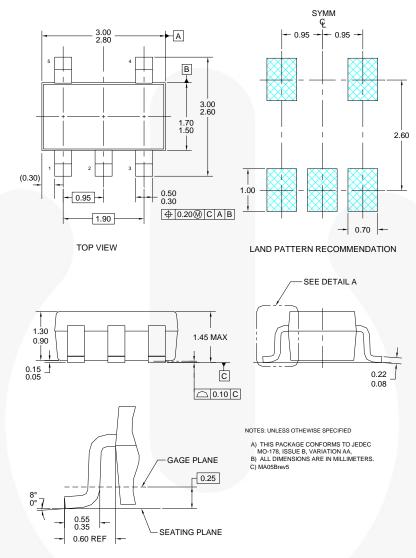


Figure 6. 5-Lead SOT23, JEDEC MO-178 1.6 mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/packaging/SOT23-5L tr.pdf.

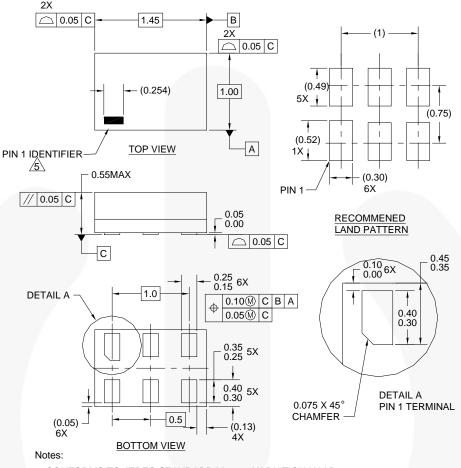
Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
M5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions



Figure 7. 5-Lead, SC70, EIAJ SC-88a, 1.25 mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/analog/pdf/sc70-5 tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994
- 4. FILENAME AND REVISION: MAC06AREV4
- 5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

OTHER LINE IN THE MARK CODE LAYOUT.

Figure 8. 6-Lead, MicroPak™, 1.0 mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Serriconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFST AX-CAP FRFET® BitSiC™ GreenBridge™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™ CROSSVOLT™ Gmax™ GTO™ CTI TM Current Transfer Logic™ IntelliMAX™ ISOPLANAR™

DEUXPEED[®] Dual Cool™ EcoSPARK® EfficientMax™ ESBC™

airchild® FACT Quiet Series™ FACT[®] FAST[®]

Fairchild Semiconductor® FastvCore™ FETBench™

Global Power Resources

QFET OSTM Quiet Series™ RapidConfigure™

Making Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™ Programmable Active Droop™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT**3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET**

SYSTEM SERVERAL TinyBoost[®] TinyBuck[®] TinyCalc™_ TinyLogic[®] TINYOPTO** TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™ UHC Ultra FRFET™ UniFET™ **VCXTM** VisualMax™

VoltagePlus™

XSTM

Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

NC7SZ66L6X NC7SZ66M5X NC7SZ66P5X