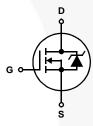


Data Sheet October 2013

N-Channel Logic Level Power MOSFET 60 V, 16 A, 47 $m\Omega$

These are N-Channel power MOSFETs manufactured using a modern process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers and emitter switches for bipolar transistors. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V to 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits.

Formerly developmental type TA49027.


Ordering Information

PART NUMBER	PACKAGE	BRAND		
RFD16N06LESM9A	TO-252AA	16N06LE		

Features

- 16A, 60V
- $r_{DS(ON)} = 0.047\Omega$
- Temperature Compensating PSPICE[®] Model
- Can be Driven Directly from CMOS, NMOS, TTL Circuits
- · Peak Current vs Pulse Width Curve
- UIS Rating Curve
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-252AA

RFD16N06LESM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFD16N06LESM	UNITS
Drain to Source Voltage (Note 1)V _{DSS}	60	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	60	V
Gate to Source Voltage	+10, -8	V
Continuous Drain Current	16	Α
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve	
Pulsed Avalanche RatingEAS	Refer to UIS Curve	
Power Dissipation	90	W
Derate Above 25 ^o C	0.606	W/oC
Operating and Storage Temperature	-55 to 175	οС
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CO	ONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V, Figure 11		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu$ A, Figure 10		1	-	3	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 55V, V _{GS} = 0V		-	-	1	μΑ
		$V_{DS} = 50V, V_{GS} = 0V, T_{C} = 150^{\circ}C$		-	-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = +10, -8V$		-	-	10	μΑ
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 16A, V _{GS} = 5V	1	-	-	0.047	Ω
Turn-On Time	ton	$V_{DD} = 30V$, $I_{D} = 16A$, $R_{L} = 1.88\Omega$, $V_{GS} = 5V$, $R_{GS} = 5\Omega$ Figures 16, 17	-	-	100	ns	
Turn-On Delay Time	t _{d(ON)}		-	11	-	ns	
Rise Time	t _r		-	60	-	ns	
Turn-Off Delay Time	t _{d(OFF)}			-	48	-	ns
Fall Time	t _f			-	35	-	ns
Turn-Off Time	tOFF			/-	-	115	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 10V	V _{DD} = 48V,	-	51	62	nC
Gate Charge at 5V	Q _{g(5)}	$V_{GS} = 0V \text{ to } 5V$	$I_D = 16A, R_L = 3\Omega$ Figures 18, 19	-	29	35	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0V \text{ to } 1V$		-	1.8	2.6	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz Figure 12		-	1350	-	pF
Output Capacitance	C _{OSS}			-	300	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	90	-	pF
Thermal Resistance Junction to Case	$R_{\theta JC}$			-	-	1.65	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-252AA		-	-	80	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V_{SD}	I _{SD} = 16A	-	-	1.5	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 16A$, $dI_{SD}/dt = 100A/\mu s$	-	-	125	ns

NOTES:

- 2. Pulse Test: Pulse Width ≤300µs, Duty Cycle ≤2%.
- 3. Repetitive Rating: Pulse Width limited by max junction temperature.

©2002 Fairchild Semiconductor Corporation RFD16N06LESM Rev. C0

Typical Performance Curves Unless Otherwise Specified

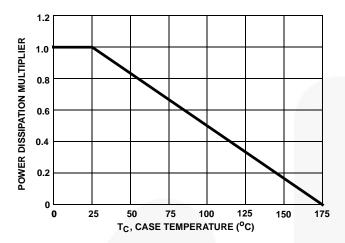


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

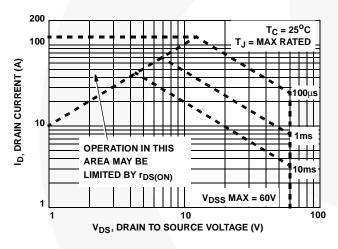


FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

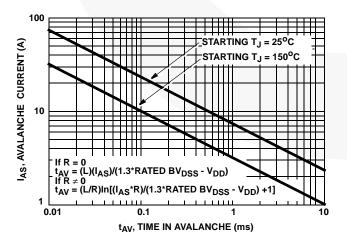


FIGURE 5. UNCLAMPED INDUCTIVE SWITCHING

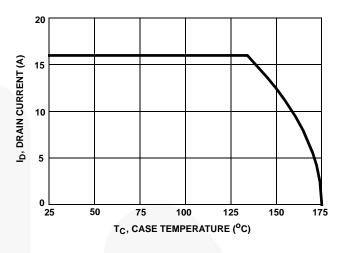


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

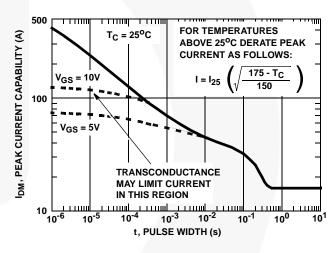


FIGURE 4. PEAK CURRENT CAPABILITY

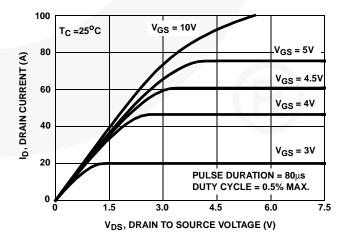


FIGURE 6. SATURATION CHARACTERISTICS

©2002 Fairchild Semiconductor Corporation

Typical Performance Curves Unless Otherwise Specified (Continued)

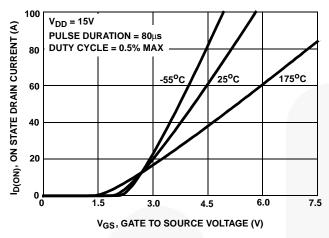


FIGURE 7. TRANSFER CHARACTERISTICS

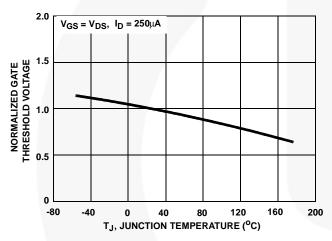


FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE

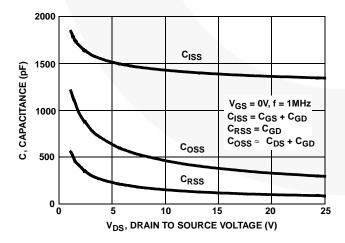


FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

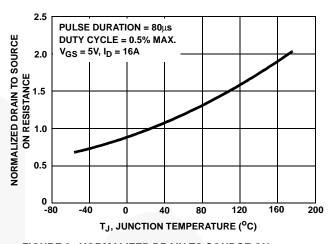


FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

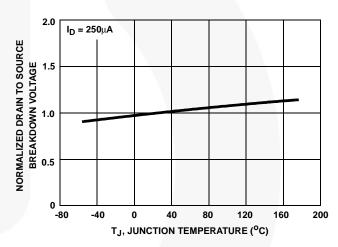
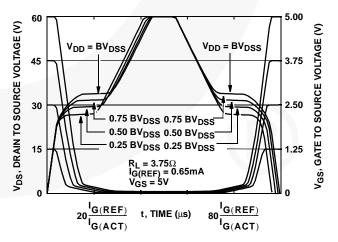



FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

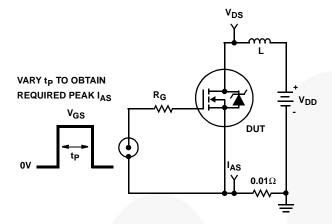


FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT

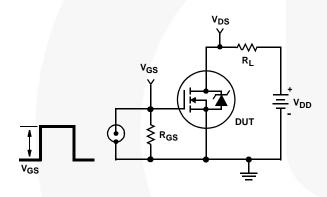


FIGURE 15. SWITCHING TIME TEST CIRCUIT

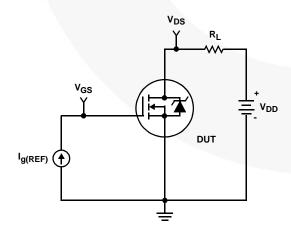


FIGURE 17. GATE CHARGE TEST CIRCUIT

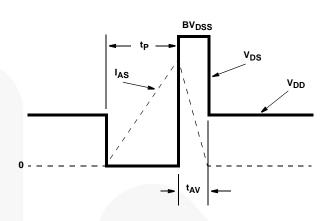


FIGURE 14. UNCLAMPED ENERGY WAVEFORMS

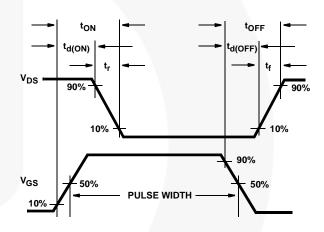


FIGURE 16. RESISTIVE SWITCHING WAVEFORMS

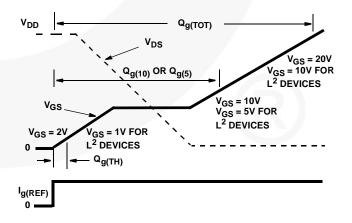
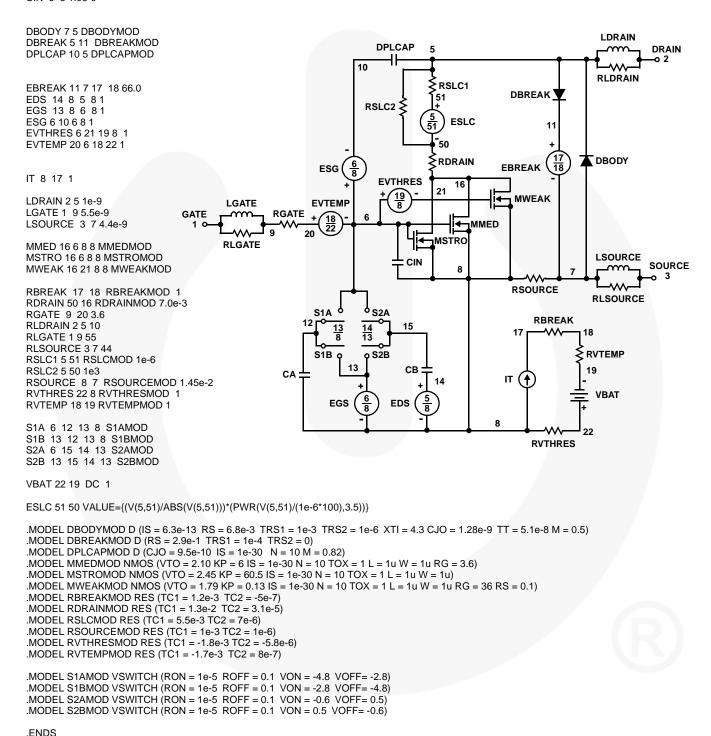



FIGURE 18. GATE CHARGE WAVEFORMS

PSPICE Electrical Model

SUBCKT RFD16N06LESM 2 1 3; rev 8/2/93

CA 12 8 1.46e-9 CB 15 14 1.46e-9 CIN 6 8 1.0e-9

For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

RFD16N06LESM

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

(1)_®

AccuPower™ AX-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™

CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED®

Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™

FRFFT® Global Power ResourceSM GreenBridge™ Green FPŠ™ Green FPS™ e-Series™ G*max*™ GTO™

F-PFS™

IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ **OPTOLOGIC®** OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

OFET[®] OS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

SYSTEM®*

GENERAL TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®*

Sync-Lock™

UHC® Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XSTM

μSerDes™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 166

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: RFD16N06LESM9A