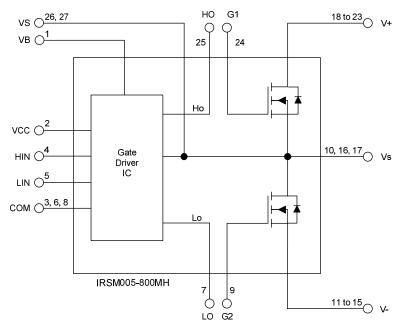
IRSM005-800MH

Half-Bridge IPM for Low Voltage **Applications**


Description

The IRSM005-800MH is a general purpose half-bridge with integrated gate driver in an attractive 7x8mm PQFN package. It is a general purpose building block suitable for a variety of low voltage applications where power density is of critical importance. Typical examples would be advanced motor drives, dc-to-ac and dcto-dc converters.

Features

- Package with low thermal resistance and minimal parasitics
- Low on-resistance HEXFETs: 2.7 m Ω typ.
- Undervoltage lockout on logic supply
- Independent gate drive in phase with logic input
- Gate drive supply range from 10V to 20V
- Propagation delay matched to defined spec
- 3.3V, 5V and 15V logic input compatible
- RoHS compliant

Internal Electrical Schematic

Ordering Information

Orderable Part Number	Package Type	Form	Quantity
IRSM005800MH	PQFN 7x8mm	Tray	1300
IRSM005800MHTR	PQFN 7x8mm	Tape and Reel	2000

¿MOTION[™]

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the module may occur. These are not tested at manufacturing. All voltage parameters are absolute voltages referenced to V_{SS} unless otherwise stated in the table. The thermal resistance rating is measured under board mounted and still air conditions.

Symbol	Description	Min	Мах	Unit
V _{DS}	MOSFET Drain-to-Source Voltage		40	V
Io	Maximum DC current per MOSFET @ T_C =25°C (Note1)		80	А
P _d	Maximum Power dissipation per MOSFET @ $T_C = 100^{\circ}C$		13	W
T _J (MOSFET & IC)	Maximum Operating Junction Temperature		150	°C
T _s	Storage Temperature Range	-40	150	°C
V _{GS}	Gate to Source voltage	+/-	20	
V _B	High side floating absolute supply voltage	-0.3	225	
V _S	High side floating supply offset voltage	V _B - 20	V _B + 0.3	
V _{CC}	Low Side fixed supply voltage	-0.3	25	V
V _{LO}	Low side output voltage	-0.3	V _{CC} +0.3V	
V _{HO}	High side output voltage	-0.3	V _{CC} +0.3V	
V _{IN}	Logic input voltage LIN, HIN	-0.3	V _{CC} +0.3V	

Note1: Calculated based on maximum junction temperature. Bond wires current limit is 49A

Inverter Static Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS})=15V, TJ=25°C, unless otherwise specified.

Symbol	Description	Min	Тур	Мах	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	H _{IN} =L _{IN} =0V, I _D =250µA
$V_{GS(TH)}$	Gate Threshold Voltage	2		4	V	I _D =100μA
D	Drain to Source Voltage		2.7	5.0	mΩ	I _D =10A, T _J =25°C
R _{DS(ON)}	Drain-to-Source Voltage		4.2		11122	I _D =10A, T _J =150°C
				20		H _{IN} =L _{IN} =0V, V ⁺ =40V
I _{DSS}	Zero Gate Voltage Drain Current			150	μA	H _{IN} =L _{IN} =0V, V ⁺ =40V, T _J =125°C
1	Gate to Source Forward Leakage			100	nA	V _{GS} =20V
I _{GSS}	Gate to Source Reverse Leakage			-100	ПА	V _{GS} =-20V
R _G	Internal Gate Resistance		1.5		Ω	
M	Mosfet Diode Forward Voltage Drop		0.8	0.9	v	I _F =10A
V _{SD}	Moster Diode Forward Voltage Drop		0.55		v	I _F =10A, T _J =150°C
RBSOA	Reverse Bias Safe Operating Area	FULL	SQUARE,	limited by	T _{Jmax}	V ⁺ = 40V, V _{CC} =+15V to 0V
I _o @ T _A =60°C	RMS Phase Current, sinusoidal modulation, 5kHz		13.5		A _{RMS}	V+=32V, TJ=125°C, MI=1, PF=0.8, typical board
I _o @ T _A =60°C	RMS Phase Current, sinusoidal modulation, 20kHz		6		A _{RMS}	mount. See Figure 2.
EAS	Single Pulse Avalanche Energy	9.2			mJ	

Inverter Dynamic Electrical Characteristics V_{BIAS} (V_{CC}, V_{BS})=15V, TJ=25°C, unless otherwise specified.

gfs	Forward Transconductance	159			S	I _D =50A V _{DS} =10V	
Q _G	Total Gate Charge		65	98	I _D =50A		
Q _{GS}	Gate to Source Charge		16		nC	V _{DS} = 20V V _{GS} =10V	
Q_{GD}	Gate to Drain Charge		23				
Q _{SYNC}	Total Gate Charge Sync. ($Q_G - Q_{GD}$)		42			I _D =50A,V _{DS} = 0V,V _{GS} = 10V	
T _{DON}	Mosfet Turn On Delay Time		11				
T _R	Mosfet Rise Time		37		ns	I _D =30A V _{DD} = 20V	
T _{DOFF}	Mosfet Turn Off Delay Time		33		115	V_{GS} =10V R _G =2.7Ω	
T _F	Mosfet Fall Time		26				
CISS	Input Capacitance		3174			F= 1.0MHz	
Coss	Output Capacitance		479		pF	V _{DS} = 25V	
C _{RSS}	Reverse Transfer Capacitance		332			V _{GS} =0V	
T _{RR}	Reverse Recovery Time		16		ns	I _F =50A	
Q _{RR}	Reverse Recovery Charge		5		nC	V _R =34V dl/dt= 100A/us	
I _{RRM}	Reverse Recovery Current		0.5		А		

Recommended Operating Conditions Driver Function

For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to COM. The VS offset is tested with all supplies biased at 15V differential.

Symbol	Definition	Min	Тур	Мах	Units
V _B	High side floating supply voltage	V _S +10	V _S +15	V _S +20	V
Vs	High side floating supply offset voltage	Note 1		40	V
V _{CC}	Low side and logic fixed supply voltage	10	15	20	V
VIN	Logic input voltage LIN, HIN	СОМ		Vcc	V
HIN	High side PWM pulse width	1			μs
Deadtime	Suggested dead time between HIN and LIN	0.3	0.5		μs

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC}, V_{BS})=15V, T_J=25°C, unless otherwise specified. The V_{IN}, and I_{IN} parameters are referenced to COM

Symbol	Definition	Min	Тур	Мах	Units	Test Conditions
V _{IH}	Positive going input threshold for LIN, HIN	2.5				V _{CC} =10 to
V _{IL}	Negative going input threshold for LIN, HIN			0.8		20V
V _{OH}	High Level Output Voltage		0.05	0.2		I _O =2mA
V _{OL}	Low Level Output Voltage		0.02	0.1	v	
V _{CCUV+} V _{BSUV+}	V _{CC} /V _{BS} supply undervoltage, Positive going threshold	8.0	8.9	9.8		
V _{CCUV-} V _{BSUV-}	V_{CC}/V_{BS} supply undervoltage, Negative going threshold	7.4	8.2	9.0		
V _{CCUVH} V _{BSUH}	V_{CC}/V_{BS} supply undervoltage lock-out hysteresis		0.8			
I _{LK}	Offset Supply Leakage Current			50		V _B =V _S =200V
I _{QBS}	Quiescent V _{BS} supply current		45	75		V _{IN} =0V or 5V
lacc	Quiescent V _{CC} supply current		250	500	μA	VIN -0V 01 3V
I _{IN+}	Input bias current V_{IN} =5V for LIN, HIN		4	10		V _{IN} = 5V
I _{IN-}	Input bias current V_{IN} =0V for LIN, HIN		0.5	1		V _{IN} =0V
I _{O+}	IC high output short circuit current	200	290		mA	V _O = 0V, V _{IN} = 5V,
I ₀₋	IC low output short circuit current	420	600			PW <10us

Dynamic Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC}, V_{BS})=15V, TJ=25°C unless otherwise specified, C_L = 1000 pF, Driver only timing.

Symbol	Description	Min	Тур	Max	Units	Conditions
T _R	IC Turn on Rise Time		50	150		
T _F	IC Turn off Fall Time		35	90		
T _{ON}	IC Input to Output propagation turn- on delay time		160	220	ns	
T _{OFF}	IC Input to Output propagation turn- off delay time		150	220		
МТ	IC Delay matching, HS and LS turn- on/off			50		

Thermal and Mechanical Characteristics

Symbol	Description	Min	Тур	Max	Units	Conditions
R _{th(J-B)}	Thermal resistance, junction to mounting pad, each MOSFET		3.8		°C/W	Standard reflow-solder process
R _{th(J-A)}	Thermal resistance, junction to ambient, each MOSFET		40		°C/W	Mounted on 50mm ² of four-layer FR4 with 28 vias

Input-Output Logic Level Table

HIN	LIN	U,V,W
HI	HI	Shoot-through
LO	LO	**
HI	LO	V+
LO	HI	0

* V+ if motor current is flowing into VS, 0 if current is flowing out of VS into the motor winding

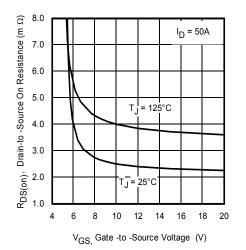


Fig. 1 Typical On Resistance vs Gate Voltage

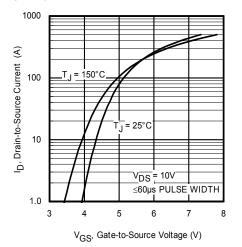


Fig. 3 Typical Transfer Characteristic

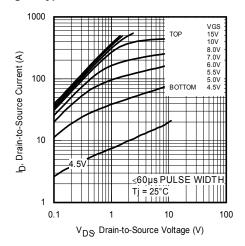


Fig. 5 Typical Output Characteristic @ 25C

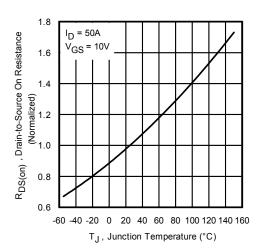


Fig.2 Normalized On Resistance vs Temperature

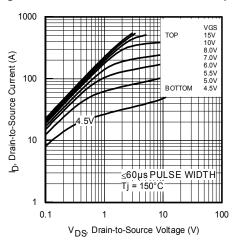


Fig.4 Typical Output Characteristic @ 150C

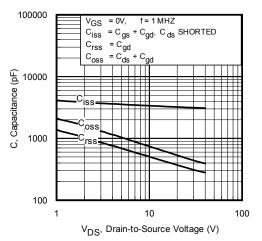
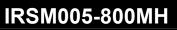



Fig. 6 Typical Capacitance vs Drain to Source Voltage

*i*MOTION[™]

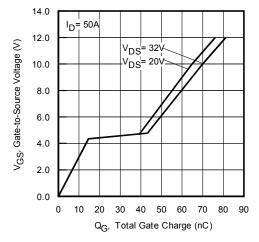


Fig. 7 Typical Gate Charge vs Gate Voltage

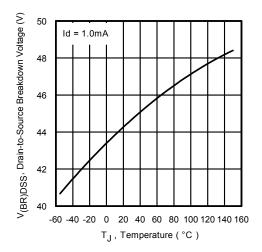


Fig. 9 Typical Breakdown Voltage vs Temperature

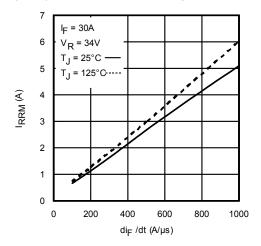


Fig. 11 Typical Recovery Current vs dl/dt

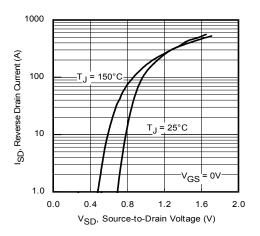


Fig.8 Typical Diode Forward Voltage Drop

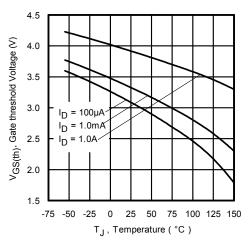


Fig.10 Threshold Voltage vs Temperature

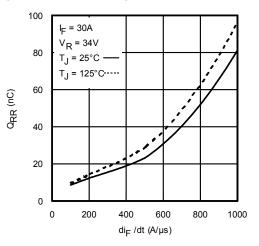


Fig. 12 Typical Recovery Charge vs Temperature

Module Pin-Out Description

Pin	Name	Description
3, 6, 8	СОМ	Negative of Gate Drive Supply Voltage
2	Vcc	15V Gate Drive Supply
4	HIN	Logic Input for High Side (Active High)
5	LIN	Logic Input for Low Side (Active High)
7	LO	Low Side FET Gate
9	G2	Low Side Gate Drive Output
10, 16, 17	Vs	Phase Output
11 – 15	V-	Low Side Source Connection
18 – 23	V+	DC Bus
24	G1	High Side Gate Drive Output
25	HO	High Side FET Gate
26 – 27	Vs	Negative of Bootstrap Supply
1	V _B	Positive of Bootstrap Supply

Exposed pad (Pin 28) has to be connected to COM for better electrical performance

*i*MOTION[™]

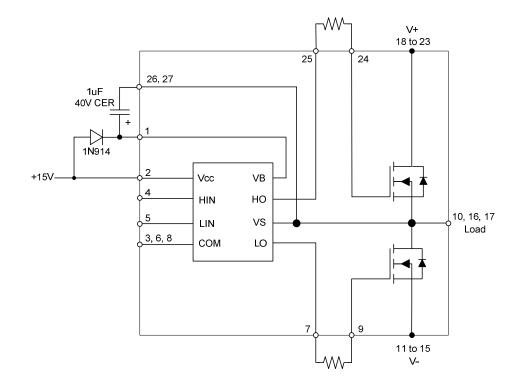


Figure 13: Typical Application Connection

- 1. Bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR Design tip DT04-4 or application note AN-1044.

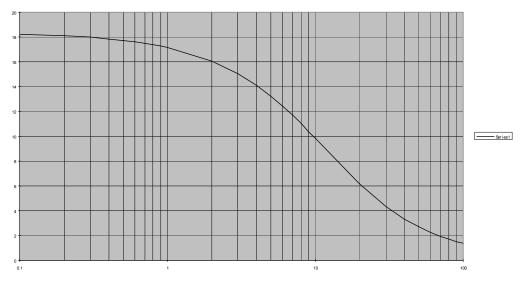
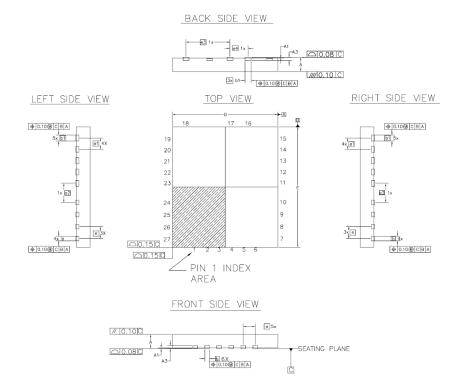


Figure 14: Typical Output Current (RMS of fundamental) vs. Modulation Frequency Sinusoidal Modulation, $V^+=32V$, $T_J=125^{\circ}C$, $T_A=60^{\circ}C$, MI=1, PF=0.8, mounted on 50 mm² of FR4

Qualification

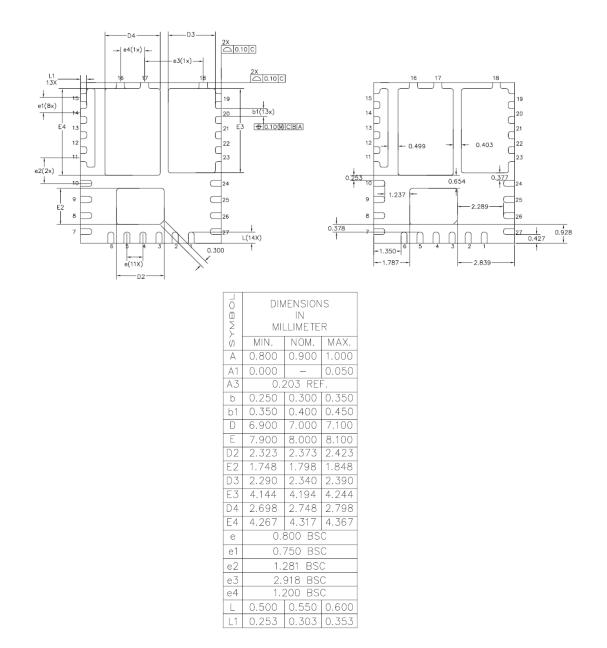
Qualific	ation Level	Industrial ^{††} (per JEDEC JESD 47E)
Moisture Sensitivity Level		MSL3 ^{†††} (per IPC/JEDEC J-STD-020C)
ESD	Machine Model	Class B (±200V) (per JEDEC standard JESD22-A115A)
	Human Body Model	Class 1C (±1000V) (per EIA/JEDEC standard EIA/JES-001A-2011)
RoHS Compliant		Yes


† Qualification standards can be found at International Rectifier's web site <u>http://www.irf.com/</u>.

†† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.

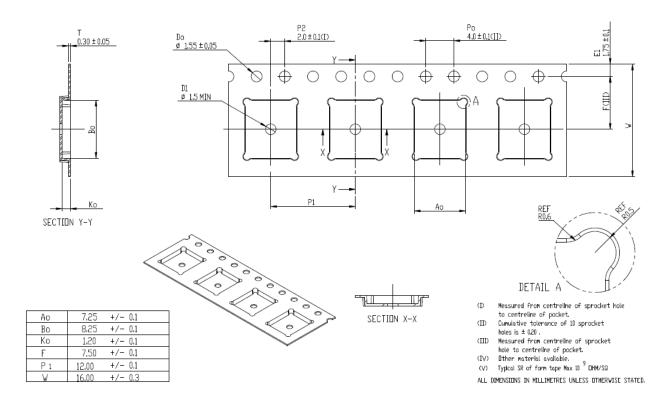
+++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Package Outline (Top & Side view)



	DIMENSIONS					
ă	Diriv	IN				
SYMBOL	MI	LIMETE	R			
Ű,	MIN.	NOM.	MAX.			
А	0.800	0.900	1.000			
Α1	0.000	-	0.050			
A3	0.2	203 REF				
b	0.250	0.300	0.350			
b1	0.350	0.400	0.450			
D	6.900	7.000	7.100			
Ε	7.900	8.000	8.100			
D2	2.323	2.373	2.423			
E2	1.748	1.798	1.848			
D3	2.290	2.340	2.390			
E3	4.144	4.194	4.244			
D4	2.698	2.748	2.798			
E4	4.267	4.317	4.367			
е	0.8	800 BS	С			
e1	0.1	750 BS	С			
e2	1.281 BSC					
e3	2.918 BSC					
e4	1.2	200 BS(0			
L	0.500	0.550	0.600			
L1	0.253	0.303	0.353			

Package Outline (Bottom View, 1 of 2)


PACKAGE BOTTOM VIEW

- 1. For mounting instruction see AN-1178.
- 2. For recommended PCB via design see AN-1091.
- 3. For recommended design, solder profile, integration and rework guidelines see AN-1028.
- 4. For board inspection guidelines see AN-1133.

Tape and Reel Details

International **I** Rectifier Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information

14

*i*MOTION[™]

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

International Rectifier: IRSM005-800MHTR IRSM005-800MH