600 V

10 A

advanced

Sonic-FRD

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

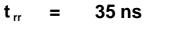
Part number (Marking on product)

DHG 10 I 600PM

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:

- Power dissipation within the diode


- Turn-on loss in the commutating switch

Applications:

- · Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode

- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

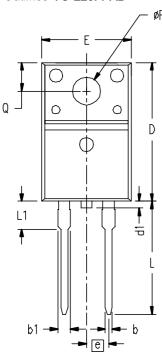
 $V_{RRM} =$

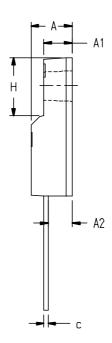
TO-220FPAB

- Industry standard outline
- · Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25 °C			600	V
I _R	reverse current	$V_{R} = 600 V$ $V_{R} = 600 V$	$T_{VJ} = 25 ^{\circ}\text{C}$ $T_{VJ} = 125 ^{\circ}\text{C}$			15 1.5	μA mA
V _F	forward voltage	I _F = 10 A I _F = 20 A	$T_{VJ} = 25 ^{\circ}\text{C}$			2.35	V
		$I_F = 10 A$ $I_F = 20 A$	T _{vJ} = 125 °C			2.20	V V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 30 °C			10	Α
V _{F0}	threshold voltage slope resistance $T_{VJ} = 150 ^{\circ}\text{C}$				1.20 93	V mΩ	
R _{thJC}	thermal resistance junction to case					4.00	K/W
T _{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		T _C = 25 °C			31	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	T _{VJ} = 45 °C			100	А
I _{RM}	max. reverse recovery current	I _F = 10 A;	$T_{VJ} = 25 ^{\circ}\text{C}$ $T_{VJ} = 125 ^{\circ}\text{C}$		4		A A
t _m	reverse recovery time	$-di_F/dt = A/\mu s$ $V_R = 200 V$	$T_{VJ} = 25 \degree C$ $T_{VJ} = 125 \degree C$		35		ns ns
C _J	junction capacitance	V _R = 300 V; f = 1 MHz	T _{vJ} = 25 °C				pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{vJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$	7			tbd	Α




advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to heatsink			0.50		K/W	
$M_{\scriptscriptstyle D}$	mounting torque		0.4		0.6	Nm	
F _c	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAB

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
А	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
۵	.028	.035	0.70	0,90	
b1	.050	.058	1.27	1.47	
U	.018	.024	0.45	0,60	
	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
E	.392	.408	9,96	10,36	
υ	.100 BSC		2.54 BSC		
I	.255	.271	6.48	6.88	
	.499	.523	12.68	13,28	
L1	.119	.135	3.03	3,43	
ØΡ	.121	.129	3.08	3.28	
Q	.126	.134	3.20	3,40	

NOTE:

1. All metal surface are matte pure tin plated except trimmed area.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

DHG10I600PM