

. eescale Semiconductor

Technical Data

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed primarily for pulse wideband applications with frequencies up to 150 MHz. Devices are unmatched and are suitable for use in industrial, medical and scientific applications.

• Typical Pulse Performance at 130 MHz: V_{DD} = 50 Volts, I_{DQ} = 150 mA, P_{out} = 1000 Watts Peak (200 W Avg.), Pulse Width = 100 μ sec, Duty Cycle = 20% Power Gain — 26 dB Drain Efficiency — 71%

 Capable of Handling 10:1 VSWR, @ 50 Vdc, 130 MHz, 1000 Watts Peak Power

Features

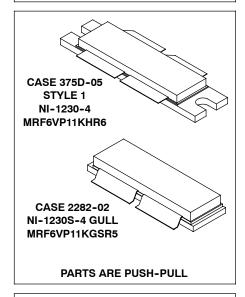
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- · CW Operation Capability with Adequate Cooling
- Qualified Up to a Maximum of 50 V_{DD} Operation
- · Integrated ESD Protection
- · Designed for Push-Pull Operation
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13 inch Reel.
 R5 Suffix = 50 Units, 56 mm Tape Width, 13 Inch Reel.

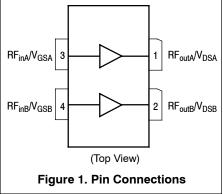
Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 67°C, 1000 W CW, 100 MHz	R _{θJC}	0.13	°C/W
Thermal Impedance, Junction to Case Pulse: Case Temperature 80°C, 1000 W Peak, 100 µsec Pulse Width, 20% Duty Cycle	$Z_{\theta JC}$	0.03	°C/W


- 1. Continuous use at maximum temperature will affect MTTF.
- MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955


Document Number: MRF6VP11KH Rev. 8, 9/2012

VRoHS

MRF6VP11KHR6 MRF6VP11KGSR5

1.8-150 MHz, 1000 W, 50 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2000 V
Machine Model (per EIA/JESD22-A115)	A, passes 125 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽¹⁾					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	10	μAdc
Drain-Source Breakdown Voltage (I _D = 300 mA, V _{GS} = 0 Vdc)	V _{(BR)DSS}	110	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	100	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	mA
On Characteristics					
Gate Threshold Voltage (1) $(V_{DS} = 10 \text{ Vdc}, I_D = 1600 \mu\text{Adc})$	V _{GS(th)}	1	1.63	3	Vdc
Gate Quiescent Voltage ⁽²⁾ (V _{DD} = 50 Vdc, I _D = 150 mAdc, Measured in Functional Test)	$V_{GS(Q)}$	1.5	2.2	3.5	Vdc
Drain-Source On-Voltage (1) (V _{GS} = 10 Vdc, I _D = 4 Adc)	V _{DS(on)}	_	0.28	_	Vdc
Dynamic Characteristics ⁽¹⁾			1	•	•
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	3.3	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	147	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	506	_	pF
Functional Tests $^{(2,3)}$ (In Freescale Test Fixture, 50 ohm system) V_{DD} = MHz, 100 μsec Pulse Width, 20% Duty Cycle	50 Vdc, I _{DQ} = 150	mA, P _{out} =	1000 W Peak	(200 W Avg.)	, f = 130
Power Gain	G _{ps}	24	26	28	dB

Each side of device measured separately.

Drain Efficiency

Input Return Loss

2. Measurements made with device in push-pull configuration.

 η_{D}

IRL

%

dΒ

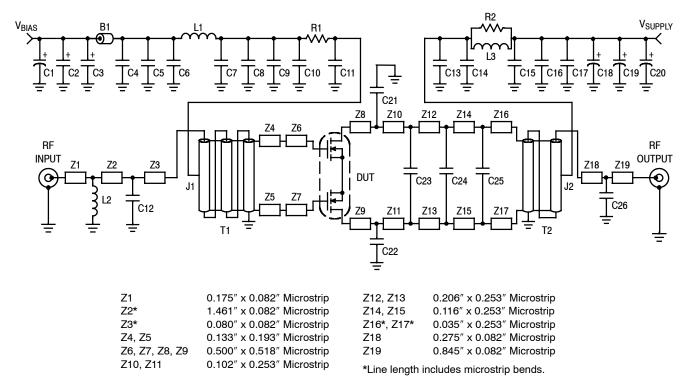
71

-16

-9

69

^{3.} Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GS) parts.



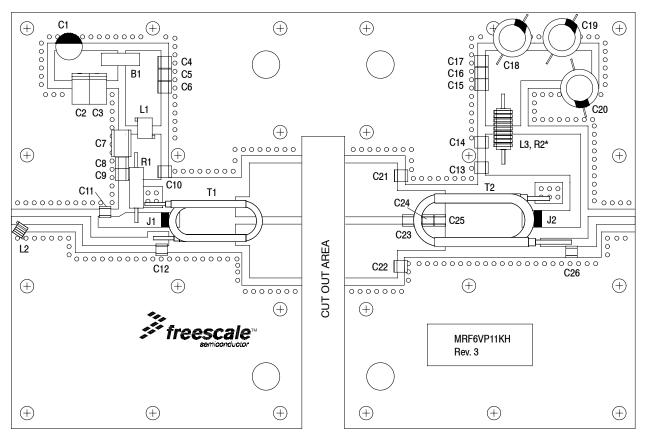
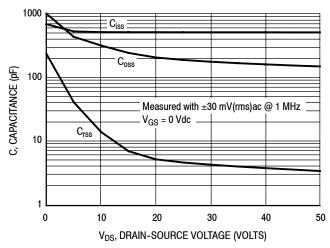

Figure 2. MRF6VP11KHR6 Test Circuit Schematic

Table 5. MRF6VP11KHR6 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
B1	95 Ω, 100 MHz Long Ferrite Bead	2743021447	Fair-Rite
C1	47 μF, 50 V Electrolytic Capacitor	476KXM050M	Illinois Cap
C2	22 μF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C3	10 μF, 35 V Tantalum Capacitor	T491D106K035AT	Kemet
C4, C9, C17	10K pF Chip Capacitors	ATC200B103KT50XT	ATC
C5, C16	20K pF Chip Capacitors	ATC200B203KT50XT	ATC
C6, C15	0.1 μF, 50 V Chip Capacitors	CDR33BX104AKYS	Kemet
C7	2.2 μF, 50 V Chip Capacitor	C1825C225J5RAC	Kemet
C8	0.22 μF, 100 V Chip Capacitor	C1825C223K1GAC	Kemet
C10, C11, C13, C14	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C12	18 pF Chip Capacitor	ATC100B180JT500XT	ATC
C18, C19, C20	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
C21, C22	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C23	75 pF Chip Capacitor	ATC100B750JT500XT	ATC
C24, C25	100 pF Chip Capacitors	ATC100B101JT500XT	ATC
C26	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
J1, J2	Jumpers from PCB to T1 and T2	Copper Foil	
L1	82 nH Inductor	1812SMS-82NJLC	CoilCraft
L2	47 nH Inductor	1812SMS-47NJLC	CoilCraft
L3*	10 Turn, 18 AWG Inductor, Hand Wound	Copper Wire	
R1	1 KΩ, 1/4 W Carbon Leaded Resistor	MCCFR0W4J0102A50	Multicomp
R2	20 Ω, 3 W Chip Resistor	CPF320R000FKE14	Vishay
T1	Balun	TUI-9	Comm Concepts
T2	Balun	TUO-4	Comm Concepts
PCB	$0.030''$, $\epsilon_r = 2.55$	CuClad 250GX-0300-55-22	Arlon

^{*}L3 is wrapped around R2.



^{*}L3 is wrapped around R2.

Figure 3. MRF6VP11KHR6 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

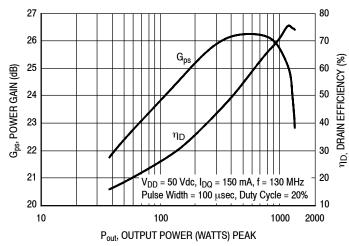


Figure 6. Power Gain and Drain Efficiency versus Output Power

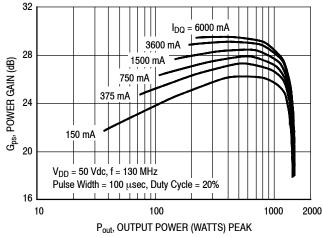
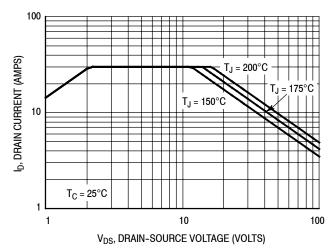



Figure 8. Power Gain versus Output Power

Note: Each side of device measured separately.

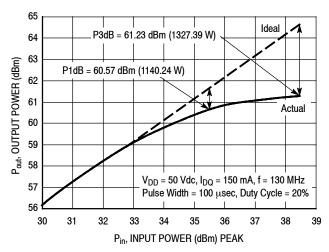


Figure 7. Output Power versus Input Power

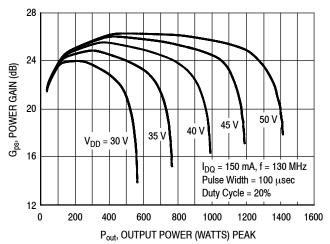


Figure 9. Power Gain versus Output Power

TYPICAL CHARACTERISTICS

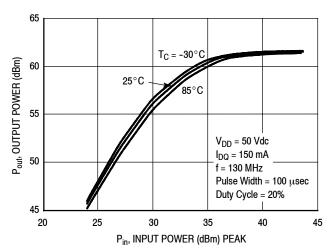


Figure 10. Output Power versus Input Power

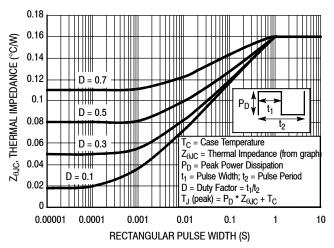


Figure 12. Transient Thermal Impedance

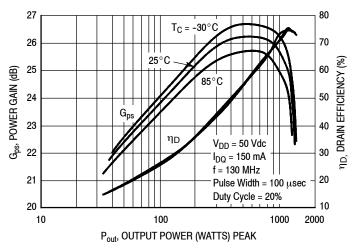
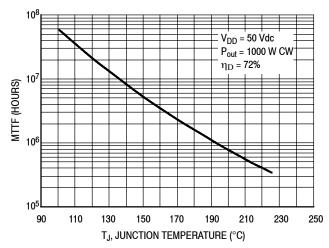
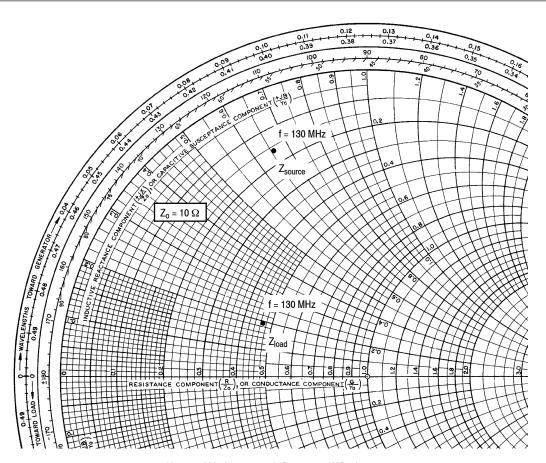



Figure 11. Power Gain and Drain Efficiency versus Output Power


Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at freescale.com/RFpower. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

For Pulse applications or CW conditions, use the MTTF calculator referenced above.

Figure 13. MTTF versus Junction Temperature - CW

 V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak

f MHz	$Z_{source} \ \ \Omega$	Z _{load} Ω
130	1.58 + j6.47	4.6 + j1.85

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

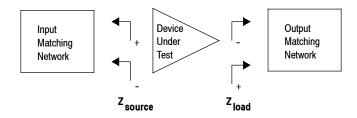
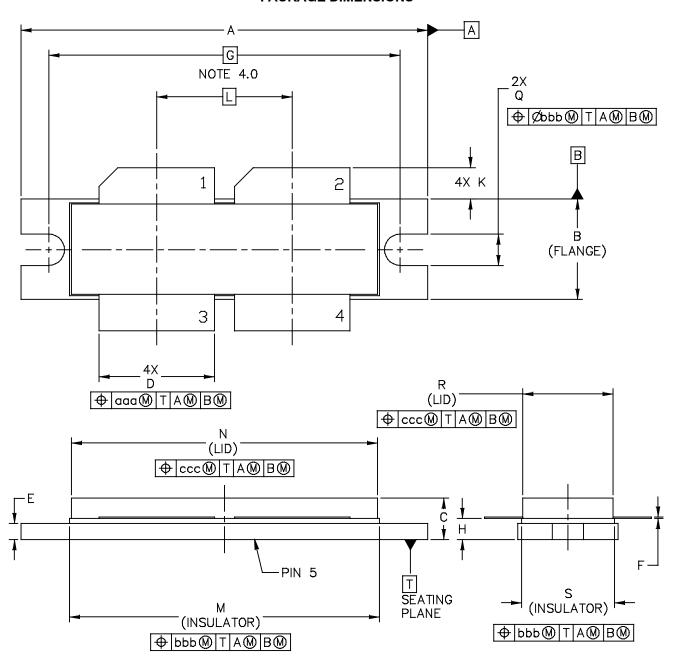



Figure 14. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NC	T TO SCALE
TITLE:	•	DOCUMENT NO): 98ASB16977C	REV: E
NI-1230		CASE NUMBER	R: 375D-05	31 MAR 2005
		STANDARD: NO	N-JEDEC	

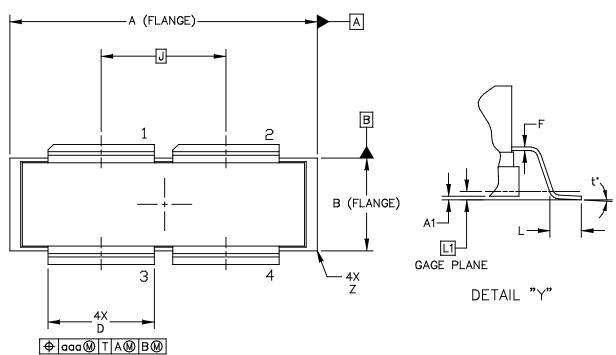
NOTES:

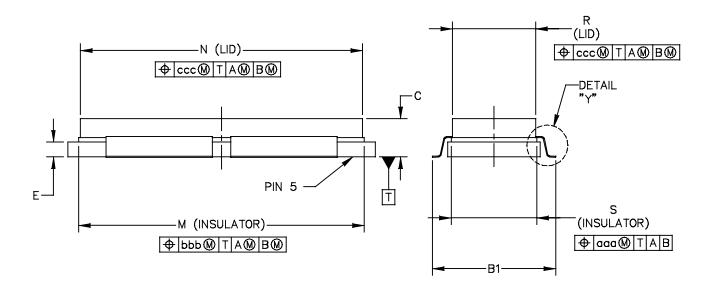
- 1.0 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. O CONTROLLING DIMENSION: INCH
- 3. O DIMENSION H IS MEASURED . 030 (0.762) AWAY FROM PACKAGE BODY.
- 4. 0 RECOMMENDED BOLT CENTER DIMENSION OF 1. 52 (38.61) BASED ON M3 SCREW.

STYLE 1:

PIN 1 - DRAIN

2 - DRAIN


3 - GATE


4 - GATE

5 - SOURCE

	INC	CH	MILL	IMETER			INCH	М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	1.615	1.625	41.02	41.28	N	1.218	1.242	30.9	4 31.55
В	.395	.405	10.03	10.29	Q	.120	.130	3.05	5 3.3
C	.150	.200	3.81	5.08	R	.355	.365	9.0	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
E	.062	.066	1.57	1.68					
F	.004	.007	0.1	0.18					
G	1.400	BSC	35.5	66 BSC	aaa		.013		0.33
H	.082	.090	2.08	2.29	bbb		.010		0.25
K	.117	.137	2.97	3.48	ccc		.020		0.51
L	.540	BSC	13.7	'2 BSC					
М	1.219	1.241	30.96	31.52					
© F		ESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		MECHANICA		AL OUTLINE PRINT VERSION NOT TO SCAL			T TO SCALE
TITLE:			•		DOCUMENT NO: 98ASB16977C REV: E			REV: E	
		NI-123	30		CASE NUMBER: 375D-05 31 MAR 20			31 MAR 2005	
					STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NO	OT TO SCALE	
TITLE:	DOCUI	MENT NO: 98ASA00459D	REV: 0	
NI-1230S-4 GU	LL CASE	CASE NUMBER: 2282-02 10 AU		
	STANI	DARD: NON-JEDEC		

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM.

		HES	MIL	LIMETERS				LIMETERS	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27
A1	001	.011	-0.03	0.28	S	.365	.375	9.27	9.53
В	.395	.405	10.03	10.29	Z	R.000	R.040	R0.00	R1.02
B1	.564	.574	14.32	14.58	t*	0,	8.	0,	8*
С	.150	.200	3.81	5.08					
D	.455	.465	11.56	11.81	aaa		.013		0.33
E	.062	.066	1.57	1.68	bbb		.010		0.25
F	.004	.007	0.10	0.18	ccc		.020 0.51		0.51
J	.540	BSC	13	.72 BSC					
L	.038	.046	0.97	1.17					
L1	.01	BSC	0.	.25 BSC					
М	1.219	1.241	30.96	31.52					
N	1.218	1.242	30.94	31.55					
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHAN			MECHANICA	L OUT	LINE	PRINT VER	SION NO	T TO SCALE
TITLE:	TITLE:					DOCUME	NT NO: 98ASA	00459D	REV: O
	NI-1230S-4 GULL					CASE NU	JMBER: 2282-	02	10 AUG 2012
						STANDAF	RD: NON-JEDE	С	

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Jan. 2008	Initial Release of Data Sheet
1	Apr. 2008	Corrected description and part number for the R1 resistor and updated R2 resistor to latest RoHS compliant part number in Table 5, Test Circuit Component Designations and Values, p. 3. Added Fig. 12, Maximum Transient Thermal Impedance, p. 6
2	July 2008	Added MTTF CW graph, Fig. 13, MTTF versus Junction Temperature, p. 6
3	Sept. 2008	 Added Note to Fig. 4, Capacitance versus Drain-Source Voltage, to denote that each side of device is measured separately, p. 5 Updated Fig. 5, DC Safe Operating Area, to clarify that measurement is on a per-side basis, p. 5 Corrected Fig. 13, MTTF versus Junction Temperature – CW, to reflect the correct die size and increased the MTTF factor accordingly, p. 6 Corrected Fig. 14, MTTF versus Junction Temperature – Pulsed, to reflect the correct die size and increased the MTTF factor accordingly, p. 6
4	Dec. 2008	Fig. 15, Series Equivalent Source and Load Impedance, corrected Z _{source} copy to read "Test circuit impedance as measured from gate to gate, balanced configuration" and Z _{load} copy to read "Test circuit impedance as measured from drain to drain, balanced configuration", p. 7
5	July 2009	 Added 1000 W CW thermal data at 100 MHz to Thermal Characteristics table, p. 1 Changed "EKME630ELL471MK25S" part number to "MCGPR63V477M13X26-RH", changed R1 Description from "1 KΩ, 1/4 W Axial Leaded Resistor" to "1 KΩ, 1/4 W Carbon Leaded Resistor" and "CMF601000R0FKEK" part number to "MCCFR0W4J0102A50", Table 5, Test Circuit Component Designations and Values, p. 3 Corrected Fig. 13, MTTF versus Junction Temperature – CW, to reflect change in Drain Efficiency from 70% to 72%, p. 6 Added Electromigration MTTF Calculator and RF High Power Model availability to Product Documentation, Tools and Software, p. 20
6	Dec. 2009	 Device frequency range improved from 10–150 MHz to 1.8–150 MHz, p. 1 Reporting of pulsed thermal data now shown using the Z_{θJC} symbol, Table 2. Thermal Characteristics, p. 1
7	Apr. 2010	Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related "Continuous use at maximum temperature will affect MTTF" footnote added, p. 1
8	Sept. 2012	 Added part number MRF6VP11KGSR5, p. 1 Added 2282-02 (NI-1230S-4 Gull) package isometric, p. 1, and Mechanical Outline, p. 10, 11 Table 3, ESD Protection Characteristics: added the device's ESD passing level as applicable to each ESD class, p. 2 Modified figure titles and/or graph axes labels to clarify application use, p. 5, 6 Fig. 12, Transient Thermal Impedance: graph updated to show correct CW operation, p. 6 Fig. 13, MTTF versus Junction Temperature – CW: MTTF end temperature on graph changed to match maximum operating junction temperature, p. 6 Fig. 14, MTTF versus Junction Temperature – Pulsed removed, p. 6. Refer to the device's MTTF Calculator available at freescale.com/RFpower. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

MRF6VP11KHR6 MRF6VP11KGSR5

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2008-2010, 2012 Freescale Semiconductor, Inc.

Document Number: MRF6VP11KH

Rev. 8, 9/2012

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Freescale Semiconductor:

MRF6VP11KHR5 MRF6VP11KGSR5