

Features

- Efficient, low-cost solution for driving MOSFETs and IGBTs
- Wide supply voltage operating range: 4.5V to 18V
- A wide range (1.5A-4A) of source/sink output current capability offerings
- Fast propagation delays (35ns typical)
- Fast rise and fall times
- Logic input (IN) 3.3V capability
- Extended temperature range: -40°C to +125°C

Applications

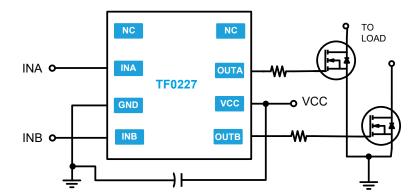
- Switch mode power supplies
- Motor Drive
- Line Drivers
- DC-DC Converters

Typical Application

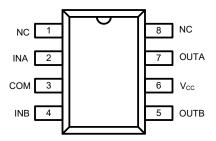
TF0227(1/2/3/5)

Dual High Speed Low-Side Gate Driver

Description

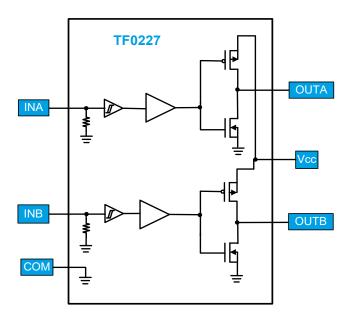

The TF0227(x), dual, high speed, low side MOSFET and IGBT drivers are capable of driving a range of source/sink peak capabilities. The TF0227(x) logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with MCUs. Fast and well matched propagation delays allow high speed operation, enabling a smaller, more compact power switching design using smaller associated components.

The TF0227(x) is offered in an SOIC-8(N) package and it operates over an extended -40 $^{\circ}$ C to +125 $^{\circ}$ C temperature range.


Ordering Information

PART NUMBER	PACKAGE	PACK / Qty	MARK
TF0227-TAU	SOIC-8(N)	Tube / 100	YYWW
TF0227-TAH	SOIC-8(N)	T&R / 2500	TF0227 Lot ID

www.tfsemi.com Rev. 1.2



Top View: SOIC8

Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION
NC	1, 8	No Connect
INA	2	Logic input for A phase, in phase with OUTA.
COM	3	Supply return
INB	4	Logic input for B phase, in phase with OUTB.
OUTB	5	Gate driver output B phase
V _{cc}	6	Supply input
OUTA	7	Gate driver output A phase

Functional Block Diagram

Absolute Maximum Ratings (NOTE1)

V _{cc} - Low-side fixed supply voltage	0.3V to +22V
V _{OUT} - Output voltage (OUTA/OUTB)	
V _{IN} - Logic input voltage (INA, INB)	0.3V to V_{cc}^{cc} +0.3V
ESD Protection on all pins	

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

P_D - Package power dissipation at $T_A \le 25 ^{\circ}\text{C}$ SOIC8	0.625W
SOIC8 Thermal Resistance (NOTE2)	0.023
θ _{JA}	200 °C/W
T _J - Junction operating temperature	+150 °C
T _L - Lead Temperature (soldering, 10 seconds)	+300°C
T _{stg} - Storage temerature	55 to 150 °C

NOTE2 When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Symbol	Parameter	MIN	MAX	Unit
V _{cc}	Supply voltage	4.5	18	V
V _{OUT}	Output voltage (OUTA/OUTB)	0	V _{cc}	V
V _{IN}	Logic input voltage (INA, INB)	0	5	٧
T _A	Ambient temperature	-40	125	°C

Apr. 2018

Electrical Characteristics (NOTE3)

 $\rm V_{BIAS}$ (4.5V $\!<\!V_{CC}\!<\!18V$), $\rm\,T_A=25~^\circ\!C$, unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	MAX	Unit	
DC Characteristics							
V _{IH}	Logic "1" input voltage		2.4				
V _{IL}	Logic "0" input voltage				0.7	V	
I _{IN+}	Logic "1" input bias current	V _{IN} = 3.3V			10	_	
I _{IN-}	Logic "0" input bias current	V _{IN} = 0V			10	μΑ	
V _{OH}	High level output voltage, V _{BIAS} - V _O	I _{OUT} = -10mA		30	100		
V _{OL}	Low level output voltage	I _{OUT} = 10mA		16	50	mV	
I _{ccQ}	V _{CC} quiescent supply current	V _{IN} = 0V or 3.3V		40	100	μΑ	
I _{O+}	Output high short circuit pulsed current	TF0227, V _{CC} = 14V		4.0		А	
I ₀₋	Output low short circuit pulsed current	TF0227, V _{CC} = 14V		4.0		А	
I _{O+}	Output high short circuit pulsed current	TF02271, V _{CC} = 14V		1.5		А	
I ₀₋	Output low short circuit pulsed current	TF02271, V _{CC} = 14V		1.5		А	
I _{O+}	Output high short circuit pulsed current	TF02272, V _{CC} = 14V		2.5		А	
I ₀₋	Output low short circuit pulsed current	TF02272, V _{CC} = 14V		2.5		А	
I _{O+}	Output high short circuit pulsed current	TF02273, V _{CC} = 14V		2.3		А	
I ₀₋	Output low short circuit pulsed current	TF02273, V _{CC} = 14V		3.3		А	
I _{O+}	Output high short circuit pulsed current	TF02275, V _{CC} = 18V		2.5		А	
I _{O-}	Output low short circuit pulsed current	TF02275, V _{CC} = 18V		5.0		А	
R _{OH}	Output Resistance, High, TF0227	$I_{OUT} = -10 \text{mA}, V_{CC} = 14 \text{V}$		1.5		Ω	
R _{OL}	Output Resistance, Low, TF0227	I _{OUT} = 10mA, V _{CC} = 14V		1		Ω	
R _{OH}	Output Resistance, High, TF02271/3/5	$I_{OUT} = -10 \text{mA}, V_{CC} = 14 \text{V}$		TBD			
R _{OL}	Output Resistance, Low, TF02271/3/5	$I_{OUT} = 10$ mA, $V_{CC} = 14$ V		TBD			

NOTE3 The V_{IN} and I_{IN} parameters are applicable to the logic input pin: INA and INB. The V_{o} and I_{o} parameters are applicable to the output pins: OUTA and OUTB.

Switching Characteristics						
t _r	Turn-on rise time, TF0227	C _L = 1000pF, V _{CC} = 14V		20	40	ns
t _f	Turn-off fall time, TF0227	$C_L = 1000 pF, V_{CC} = 14V$		20	40	ns
t _r	Turn-on rise time, TF02271/3/5	$C_L = 1000 pF, V_{CC} = 14V$		TBD		
t _f	Turn-off fall time, TF02271/3/5	$C_L = 1000 pF, V_{CC} = 14V$		TBD		
t _{on}	Turn-on propogation delay	$C_L = 1000 pF, V_{CC} = 14V$		40	100	ns
t _{off}	Turn-off propogation delay	$C_L = 1000 pF, V_{CC} = 14V$		35	50	ns

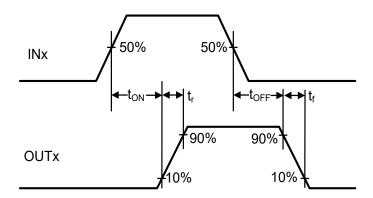
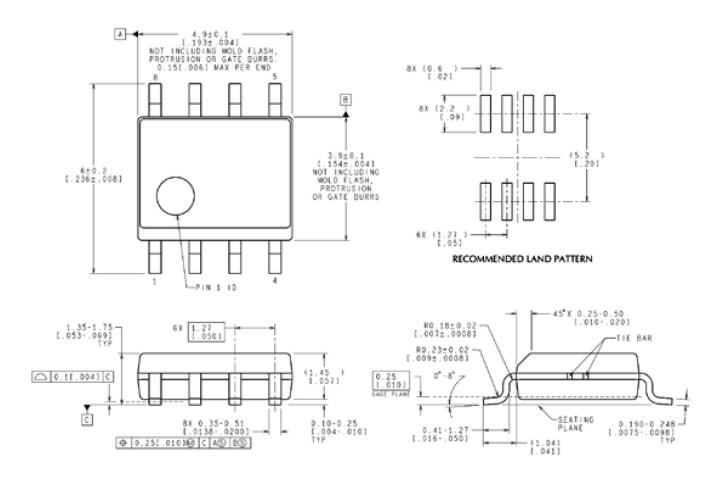



Figure 1. Switching Time Waveform Definitions

Package Dimensions (SOIC-8 N)

Please contact support@tfsemi.com for package availability.

NOTES: UNLESS OTHERWISE SPECIFIED

1. REFERENCE JEDEC REGISTRATION MS-012, VARIATION AA.

CONTROLLING DIMENSION IS MILLIMETER
VALUES IN [] ARE INCHES
DIMENSIONS IN C) FOR REFERENCE ONLY

Apr. 2018

8

Dual High Speed Low-Side Gate Driver

Rev.	Change	Owner	Date
1.0	First release, Advance Info datasheet	Keith Spaulding	9/15/2017
1.1	Spec change match to early production data	Keith Spaulding	2/2/2018

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2017 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfsemi.com or visit www.tfsemi.com

Apr. 2018