

1.5 Ω On Resistance, ±15 V/+12 V/±5 V, iCMOS, Quad SPST Switches

Data Sheet

ADG1411/ADG1412/ADG1413

FEATURES

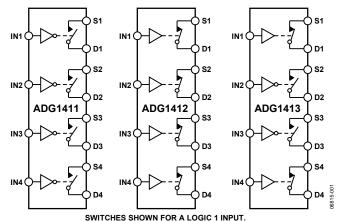
1.5 Ω on resistance
 0.3 Ω on-resistance flatness
 0.1 Ω on-resistance match between channels
 Continuous current per channel
 LFCSP: 250 mA

TSSOP: 190 mA
Fully specified at +12 V, ±15 V, and ±5 V
No V₁ supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP
Oualified for automotive applications

APPLICATIONS

Automated test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communications systems
Relay replacement

GENERAL DESCRIPTION


The ADG1411/ADG1412/ADG1413 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an *i*CMOS* process. *i*CMOS (industrial CMOS) is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching signals.

*i*CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

The ADG1411/ADG1412/ADG1413 contain four independent single-pole/single-throw (SPST) switches. The ADG1411 and

FUNCTIONAL BLOCK DIAGRAM

Fiaure 1.

ADG1412 differ only in that the digital control logic is inverted. The ADG1411 switches are turned on with Logic 0 on the appropriate control input, whereas the ADG1412 switches are turned on with Logic 1. The ADG1413 has two switches with digital control logic similar to that of the ADG1411; the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG1413 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection, which results in minimum transients when the digital inputs are switched.

PRODUCT HIGHLIGHTS

- 1. 2.6Ω maximum on resistance over temperature.
- 2. Minimum distortion.
- 3. Ultralow power dissipation: $< 0.03 \mu W$.
- 4. 16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP.

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Data Sheet

TAR		$\mathbf{\alpha}$	α	ITE	NTS
IAH	K I 🕨	111	1-11	4 I F	$\mathbf{N} \mathbf{I} \mathbf{N}$
IAL		uı	uui	116	по

Applications1
Functional Block Diagram1
General Description1
Product Highlights1
Revision History2
Specifications
±15 V Dual Supply3
+12 V Single Supply4
±5 V Dual Supply5
REVISION HISTORY
3/16—Rev. B to Rev. C
Changed CP-16-13 to CP-16-26Throughout
Changes to Figure 2, Figure 3, and Table 5
Updated Outline Dimensions
Changes to Ordering Guide
3/11—Rev. A to Rev. B
Changes to Features Section
Changes to Table 5, Added Exposed Pad Notation 3
Updated Outline Dimensions
Changes to Ordering Guide
Added Automotive Products Section 40

Absolute Maximum Ratings	6
ESD Caution	6
Pin Configurations and Function Descriptions	7
Typical Performance Characteristics	8
Terminology	12
Test Circuits	13
Outline Dimensions	15
Ordering Guide	16
Automotive Products	16

3/09—Rev. 0 to Rev. A

Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V	
Parameter, Table 1	3
Changes to Power Requirements, IDD, Digital Inputs = 5 V	
Parameter Table 2	4

5/08—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{ON}	1.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$; see Figure 23
·	1.8	2.3	2.6	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match	0.1			Ωtyp	$V_s = \pm 10 \text{ V}$, $I_s = -10 \text{ mA}$
Between Channels, ΔR _{ON}				21	, , ,
	0.18	0.19	0.21	Ω max	
On-Resistance Flatness, RFLAT(ON)	0.3			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	0.36	0.4	0.45	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.03			nA typ	$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}; \text{ see Figure 24}$
3	±0.55	±2	±12.5	nA max	, , , , , , , , , , , , , , , , , , ,
Drain Off Leakage, I _D (Off)	±0.03			nA typ	$V_{S} = \pm 10 \text{ V}, V_{D} = \mp 10 \text{ V}; \text{ see Figure 24}$
2.2 2 22	±0.55	±2	±12.5	nA max	13 =10 1, 18 1 10 1, 300 1 1gaic = 1
Channel On Leakage, ID, Is (On)	±0.35		±12.3	nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 25
Charmer on Ecakage, 10, 15 (On)	±2.13	±4	±30	nA max	vs = vb = ±10 v, see rigule 25
DICITAL INDUITO	±Ζ	14	±30	TIA IIIax	
DIGITAL INPUTS			2.0	\/ :	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}	0.005		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		.01	μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{on}	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	150	170	190	ns max	$V_s = 10 \text{ V}$; see Figure 30
toff	90			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	120	140	160	ns max	$V_s = 10 \text{ V}$; see Figure 30
Break-Before-Make Time Delay, t _D	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(ADG1413 Only)			4.0		V V 40V 5: 24
			10	ns min	$V_{51} = V_{52} = 10 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	-20			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 32}$
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 26
Channel-to-Channel Crosstalk	-100			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Total Harmonic Distortion + Noise	0.014			% typ	R_L = 110 Ω, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 29
–3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-0.35			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
C _s (Off)	23			pF typ	$V_{S} = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	23			pF typ	$V_{s} = 0 V, f = 1 MHz$
C_D , C_S (On)	116			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
IDD	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
_	220			μΑ typ	Digital inputs = 5 V
ממ			200	μA max	- 3
I _{DD}			1 380	I UA IIIax	
	0.001		380	· ·	Digital inputs = 0 V or V_{22}
l _{DD}	0.001		1	μΑ typ μΑ max	Digital inputs = 0 V or V _{DD}

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design; not subject to production test.

+12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	2.8			Ωtyp	$V_s = 0 \text{ V to } 10 \text{ V}, I_s = -10 \text{ mA}; \text{ see Figure } 23$
	3.5	4.3	4.8	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR _{ON}	0.13			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
	0.21	0.23	0.25	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	0.6			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA}$
	1.1	1.2	1.3	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/0 \text{ V}; \text{ see Figure 24}$
	±0.55	±2	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/0 \text{ V}; \text{ see Figure 24}$
	±0.55	±2	±12.5	nA max	
Channel On Leakage, ID, IS (On)	±0.15			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$; see Figure 25
3,,,,,	±1.5	±4	±30	nA max	
DIGITAL INPUTS	1				
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001		0.0	μA typ	$V_{IN} = V_{GND}$ or V_{DD}
input current, fine of fine	0.001		±0.1	μA max	VIII — VGIND OI VDD
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹	3.3			pi typ	
ton	170			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
CON	250	295	330	ns max	$V_s = 8 \text{ V}$; see Figure 30
t _{OFF}	75	273	330	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
COFF	135	165	190	ns max	$V_s = 8 \text{ V}$; see Figure 30
Break-Before-Make Time Delay, t _□ (ADG1413 Only)	100	103	190	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(ADG1413 Offiy)			40	nc min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	30		40	ns min	$V_{S1} = V_{S2} = 6$ V, see Figure 31 $V_S = 6$ V, $R_S = 0$ Ω , $C_L = 1$ nF; see Figure 32
Off Isolation	-80			pC typ	$V_S = 0.07$, $C_L = 1.11$ F, see Figure 32 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 26
Channel-to-Channel Crosstalk	-80 -100			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 100 \text{ kHz}$, see Figure 27
–3 dB Bandwidth	130			dB typ MHz typ	
	-0.5				$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss				dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
C_s (Off)	38			pF typ	$V_{S} = 6 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)	40			pF typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
C _D , C _S (On)	104			pF typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
POWER REQUIREMENTS	0.001				$V_{DD} = 13.2 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
	220			μA typ	Digital inputs = 5 V
			380	μA max	
V_{DD}			5/16.5	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

±5 V DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, Ron	3.3			Ωtyp	$V_s = \pm 4.5 \text{ V}, I_s = -10 \text{ mA}$; see Figure 23
	4	4.9	5.4	Ω max	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On-Resistance Match	0.13			Ωtyp	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
Between Channels, ΔR _{ON}					
	0.22	0.23	0.25	Ω max	
On-Resistance Flatness, RFLAT(ON)	0.9			Ω typ	$V_s = \pm 4.5 \text{ V; } I_s = -10 \text{ mA}$
	1.1	1.24	1.31	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.03			nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 24}$
_	±0.55	±2	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.03			nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 24}$
3,750,7	±0.55	±2	±12.5	nA max	13 = 115 1, 15 1 115 1, 500 1 1gui e = 1
Channel On Leakage, ID, IS (On)	±0.05		12.5	nA typ	$V_{S} = V_{D} = \pm 4.5 \text{ V}$; see Figure 25
Charmer on Leakage, ID, IS (OH)			. 20	, ,	V5 - V0 - ±4.5 V, see Figure 25
DIGITAL INPUTS	±1.0	±4	±30	nA max	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{on}	275			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	400	465	510	ns max	$V_s = 3 \text{ V}$; see Figure 30
t_{OFF}	175			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	290	320	380	ns max	V _s = 3 V; see Figure 30
Break-Before-Make Time Delay, t _D (ADG1413 Only)	100			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			50	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; see Figure 31
Charge Injection, Q _{INJ}	30			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 32
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 26
Channel-to-Channel Crosstalk	-100			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Total Harmonic Distortion + Noise	0.03			% typ	R_L = 110 Ω, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 29
−3 dB Bandwidth	130			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
C _s (Off)	32			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	33			pF typ	$V_s = 0 \text{ V, } f = 1 \text{ MHz}$
C_D , C_S (On)	116			pF typ	$V_s = 0 V, f = 1 MHz$
POWER REQUIREMENTS	1 -			1. 21.	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
			1.0	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1.0	μA max	
V_{DD}/V_{SS}		1	±4.5/±16.5	V min/V max	GND = 0 V

 $^{^{\}mbox{\scriptsize 1}}$ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Table 4.	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V_{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Digital Inputs ¹	GND $-$ 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, Sx or Dx Pins	500 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current per Channel at 25°C	
16-Lead TSSOP	190 mA
16-Lead LFCSP	250 mA
Continuous Current per Channel at 125°C	
16-Lead TSSOP	90 mA
16-Lead LFCSP	100 mA
Operating Temperature Range	
Automotive (Y Version)	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance	
16-Lead TSSOP (4-Layer Board)	112°C/W
16-Lead LFCSP	30.4°C/W
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5)°C

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

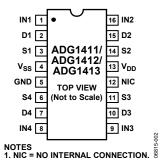


Figure 2. TSSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

F	Pin No.		
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. This pin can be an input or output.
3	1	S1	Source Terminal. This pin can be an input or output.
4	2	Vss	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Source Terminal. This pin can be an input or output.
7	5	D4	Drain Terminal. This pin can be an input or output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. This pin can be an input or output.
11	9	S3	Source Terminal. This pin can be an input or output.
12	10	NIC	No Internal Connection.
13	11	V_{DD}	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. This pin can be an input or output.
15	13	D2	Drain Terminal. This pin can be an input or output.
16	14	IN2	Logic Control Input.
N/A^1	0	EPAD	Exposed Pad. Tie the exposed pad to the substrate, Vss.

¹ N/A means not applicable.

Table 6. ADG1411/ADG1412 Truth Table

Two to the drift in drift in two to				
ADG1411 INx	ADG1412 INx	Switch Condition		
0	1	On		
1	0	Off		

Table 7. ADG1413 Truth Table

ADG1413 INx	S1, S4	S2, S3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

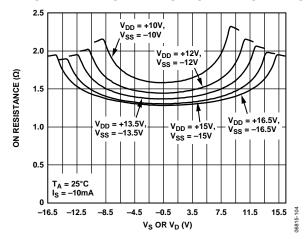


Figure 4. On Resistance vs. V_D or V_S, Dual Supply

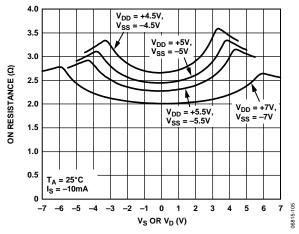


Figure 5. On Resistance vs. V_D or V_S , Dual Supply

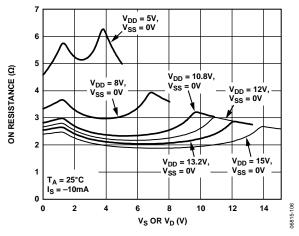


Figure 6. On Resistance vs. V_D or V_S , Single Supply

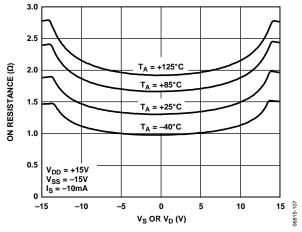


Figure 7. On Resistance vs. V_D or V_S for Different Temperatures, $\pm 15 \text{ V Dual Supply}$

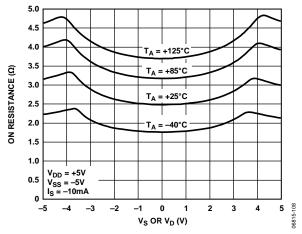


Figure 8. On Resistance vs. V_D or V_S for Different Temperatures, ± 5 V Dual Supply

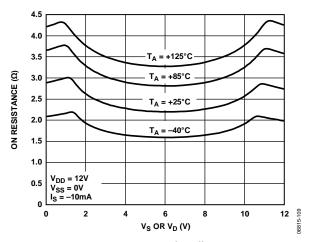


Figure 9. On Resistance vs. V_D or V_S for Different Temperatures, +12 V Single Supply

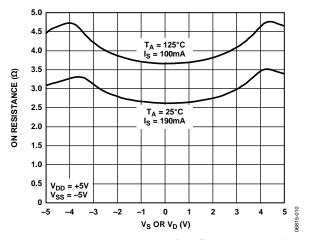


Figure 10. On Resistance vs. V_D or V_S for Different Current Levels, $\pm 5 V$ Dual Supply

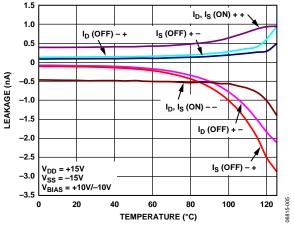


Figure 11. Leakage Currents vs. Temperature, ±15 V Dual Supply

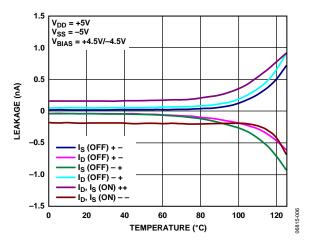


Figure 12. Leakage Currents vs. Temperature, ±5 V Dual Supply

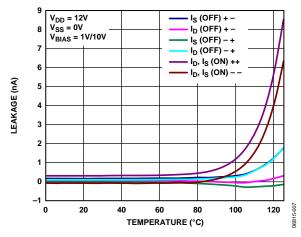


Figure 13. Leakage Currents vs. Temperature, +12 V Single Supply

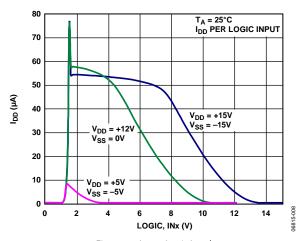


Figure 14. IDD vs. Logic Level

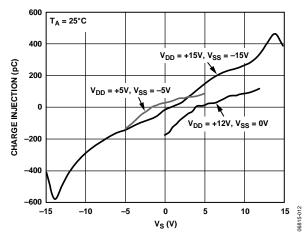


Figure 15. Charge Injection vs. Source Voltage

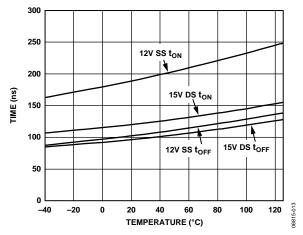


Figure 16. t_{ON}/t_{OFF} Times vs. Temperature for Single Supply (SS) and Dual Supply (DS)

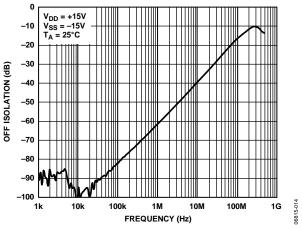


Figure 17. Off Isolation vs. Frequency, ±15 V Dual Supply

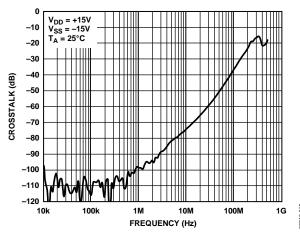


Figure 18. Crosstalk vs. Frequency, ±15 V Dual Supply

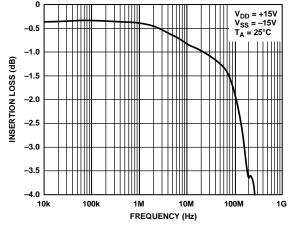


Figure 19. On Response vs. Frequency, ±15 V Dual Supply

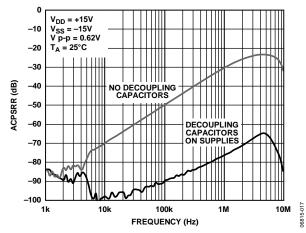


Figure 20. ACPSRR vs. Frequency, ±15 V Dual Supply

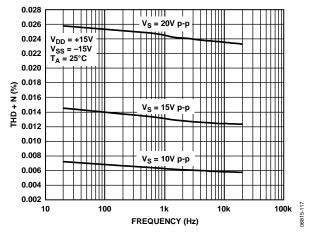


Figure 21. THD + N vs. Frequency, ±15 V Dual Supply

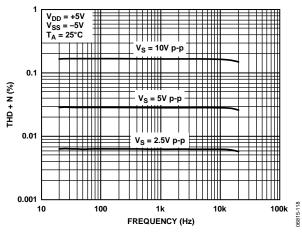


Figure 22. THD + N vs. Frequency, ±5 V Dual Supply

TERMINOLOGY

Inn

The positive supply current.

Iss

The negative supply current.

VD, Vs

The analog voltage on Terminal D and Terminal S.

RON

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

 I_D , I_S (On)

The channel leakage current with the switch on.

 \mathbf{V}_{INI}

The maximum input voltage for Logic 0.

 V_{INH}

The minimum input voltage for Logic 1.

IINL, IINE

The input current of the digital input when high or when low.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

CD (Off)

The off switch drain capacitance, which is measured with reference to ground.

 C_D , C_S (On)

The on switch capacitance, which is measured with reference to ground.

 C_{IN}

The digital input capacitance.

ton

The delay between applying the digital control input and the output switching on. See Figure 30.

 t_{OFF}

The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR.

TEST CIRCUITS

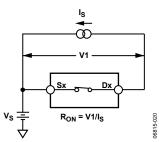
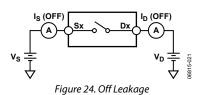
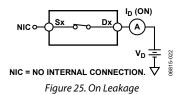




Figure 23. On Resistance

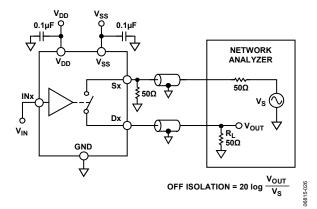


Figure 26. Off Isolation

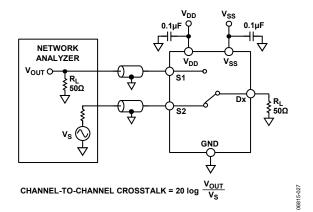


Figure 27. Channel-to-Channel Crosstalk

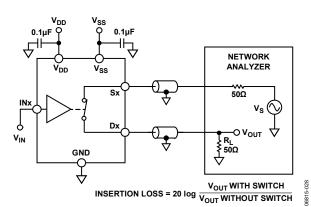


Figure 28. Bandwidth

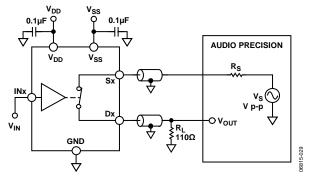


Figure 29. THD + Noise

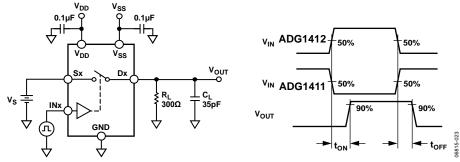


Figure 30. Switching Times

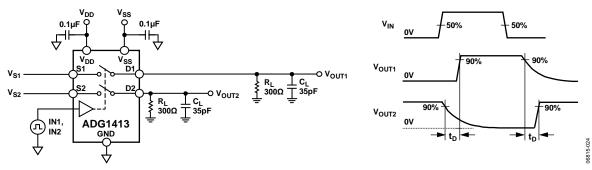
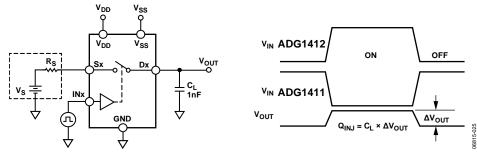
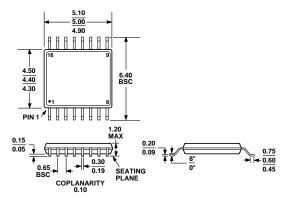
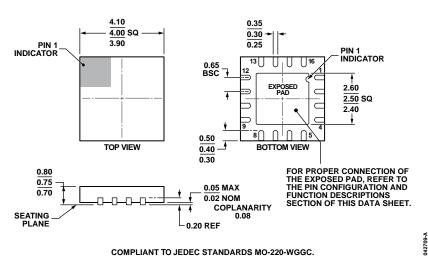


Figure 31. Break-Before-Make Time Delay


Figure 32. Charge Injection

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 33. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm \times 4 mm Body and 0.75 mm Package Height (CP-16-26) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG1411YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1411YRUZ-REEL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1411YCPZ-REEL	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1411YCPZ-REEL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1411WBCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1412YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1412YRUZ-REEL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1412YCPZ-REEL	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1412YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1413YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1413YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1413YCPZ-REEL	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1413YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADG1411W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for this model.

 $^{^{2}}$ W = qualified for automotive applications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG1412YRUZ-REEL7 ADG1411YCPZ-REEL ADG1412YCPZ-REEL ADG1413YRUZ ADG1411WBCPZ-REEL

ADG1411YRUZ ADG1413YRUZ-REEL7 ADG1413YCPZ-REEL ADG1411YCPZ-REEL7 ADG1412YCPZ-REEL7

ADG1411YRUZ-REEL7 ADG1412YRUZ ADG1413YCPZ-REEL7