

<1 Ω CMOS, 1.8 V to 5.5 V, Dual SPST Switches

ADG821/ADG822/ADG823

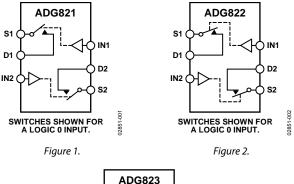
FEATURES

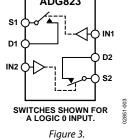
0.8 Ω maximum on resistance @ 125°C 0.3 Ω maximum on resistance flatness @ 125°C 1.8 V to 5.5 V single supply 200 mA current carrying capability Automotive temperature range: -40°C to +125°C Rail-to-rail operation 8-lead MSOP 33 ns switching times Typical power consumption: <0.01 μW TTL-/CMOS-compatible inputs Pin-compatible with the ADG721/ADG722/ADG723

APPLICATIONS

Power routing Battery-powered systems Communication systems Data acquisition systems Audio and video signal routing Cellular phones Modems PCMCIA cards Hard drives Relay replacement

GENERAL DESCRIPTION


The ADG821/ADG822/ADG823 are monolithic CMOS singlepole, single-throw (SPST) switches. These switches are designed on an advanced submicron process that provides low power dissipation, yet gives high switching speed, low on resistance, and low leakage currents.


The ADG821/ADG822/ADG823 are designed to operate from a single 1.8 V to 5.5 V supply, making them ideal for use in battery-powered instruments.

Each switch of the ADG821/ADG822/ADG823 conducts equally well in both directions when on. The ADG821/ ADG822/ADG823 contain two independent SPST switches. The ADG821 and ADG822 differ only in that both switches are normally open and normally closed, respectively. In the ADG823, Switch 1 is normally open and Switch 2 is normally closed. The ADG823 exhibits break-before-make switching action.

The ADG821/ADG822/ADG823 are available in an 8-lead MSOP.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- 1. Very Low On Resistance: 0.5Ω typ.
- 2. On Resistance Flatness ($R_{FLAT(ON)}$): 0.15 Ω typ.
- 3. Automotive Temperature Range: -40°C to +125°C.
- 4. Current Carrying Capability: 200 mA.
- 5. Low Power Dissipation. CMOS construction ensures low power dissipation.
- 6. 8-Lead MSOP.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1	
Applications 1	
Functional Block Diagrams1	
General Description 1	
Product Highlights 1	
Revision History 2	
Specifications	,
Absolute Maximum Ratings5	•

ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Test Circuits	9
Terminology	11
Outline Dimensions	12
Ordering Guide	

REVISION HISTORY

4/08—Rev. 0 to Rev. A

Updated Format	Universal
Added Table 6	
Updated Outline Dimensions	
Changes to Ordering Guide	
6 6	

8/02—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 5 V \pm 10%, GND = 0 V; T_{A} = –40°C to +125°C, unless otherwise noted.

Table 1.

Parameter	25°C	–40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	0.5			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$, see Figure 17
	0.6	0.7	0.8	Ωmax	
On Resistance Match Between	0.16			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$
Channels (ΔR _{ON})	0.2	0.25	0.28	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.15			Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = 100 \text{ mA}$
	0.23	0.26	0.3	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{s} = 4.5 \text{ V}/1 \text{ V}, V_{D} = 1 \text{ V}/4.5 \text{ V}$, see Figure 18
-	±0.25	±3	±25	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = 4.5 \text{ V}/1 \text{ V}, V_{D} = 1 \text{ V}/4.5 \text{ V}$, see Figure 18
	±0.25	±3	±25	nA max	
Channel On Leakage, I _D , Is (On)	±0.01			nA typ	$V_{s} = V_{D} = 1 V$, or $V_{s} = V_{D} = 4.5 V$, see Figure 19
	±0.25	±3	±25	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS ²				F 9F	
ton	33			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, see Figure 20
	45	48	52	ns max	······································
toff	11		-	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, see Figure 20
	16	19	21	ns max	
Break-Before-Make Time Delay, tBBM	32		21	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_{51} = V_{52} = 3 V$,
(ADG823 Only)	52		1	ns min	see Figure 21
Charge Injection	15			pC typ	$V_s = 2.5 V$; $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 2.
Off Isolation	-52			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23
Channel-to-Channel Crosstalk	-82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 24
Bandwidth –3 dB	24			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 25
C _s (Off)	85			pF typ	f = 1 MHz
C_{D} (Off)	98			pF typ	f = 1 MHz
C_D (OII) C_D , C_s (On)	230			pF typ	f = 1 MHz
POWER REQUIREMENTS	250				$V_{DD} = 5.5 \text{ V}$, digital inputs = 0 V or 5.5 V
	0.001			uA two	$v_{00} = 3.5 v$, aigital inputs = 0 v or 5.5 v
lod	0.001	1.0	2.0	μA typ	
		1.0	2.0	μA max	

 $^{\rm 1}$ On resistance parameters tested with $I_{\rm S}$ = 10 mA. $^{\rm 2}$ Guaranteed by design, not subject to production test.

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 2.

Parameter	25°C	–40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	0.7			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$, see Figure 17
	1.4	1.5	1.6	Ωmax	
On Resistance Match Between	0.16			Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = 100 \text{ mA}$
Channels (ΔR _{ON})	0.2	0.25	0.28	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.3		0.33	Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}, I_{s} = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{\rm S} = 3.3 \text{ V}/1 \text{ V}$, $V_{\rm D} = 1 \text{ V}/3.3 \text{ V}$, see Figure 18
	±0.25	±3	±15	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = 3.3 \text{ V}/1 \text{ V}, V_{D} = 1 \text{ V}/3.3 \text{ V}$, see Figure 18
	±0.25	±3	±25	nA max	
Channel On Leakage, I _D , I _S (On)	±0.01			nA typ	$V_s = V_D = 1 V$, or 3.3 V, see Figure 19
	±0.25	±3	±25	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	48			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$, see Figure 20
	67	74	78	ns max	
toFF	12			ns typ	$R_{L} = 50 \Omega$, $C_{L} = 35 pF$, $V_{S} = 1.5 V$, see Figure 20
	18	20	23	ns max	
Break-Before-Make Time Delay, t _{BBM}	40			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 1.5 V$,
(ADG823 Only)			1	ns min	see Figure 21
Charge Injection	±2			pC typ	$V_{s} = 1.5 V; R_{s} = 0 \Omega, C_{L} = 1 nF, see Figure 22$
Off Isolation	-52			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23
Channel-to-Channel Crosstalk	-82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 24
Bandwidth –3 dB	24			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 25
C _s (Off)	85			pF typ	f = 1 MHz
C _D (Off)	98			pF typ	f = 1 MHz
C_D, C_S (On)	230			pF typ	f = 1 MHz
POWER REQUIREMENTS				1 .71:	$V_{DD} = 3.6$ V, digital inputs = 0 V or 3.6 V
	0.001			μA typ	
.00	0.001	1.0	2.0	μA max	

 $^{\rm 1}$ On resistance parameters tested with $l_{\rm S}$ = 10 mA. $^{\rm 2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +7 V
Analog Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	400 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	200 mA
Operating Temperature Range	
Automotive	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature (TJ max)	150°C
Package Power Dissipation	$(T_J max - T_A)/\theta_{JA}$
8-Lead MSOP Thermal Impedance	
θ _{JA}	206°C/W
θ」	44°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	235℃

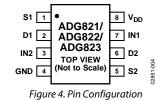
¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

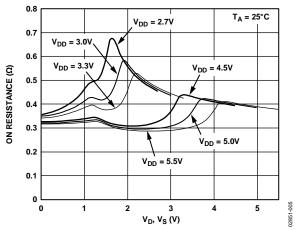
Table 4. Truth Table for the ADG821/ADG822

ADG821 INx	ADG822 INx	Switch x Condition
0	1	Off
1	0	On

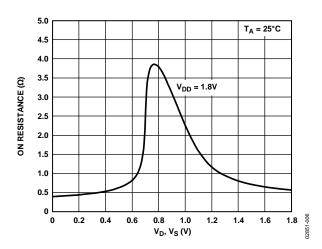
Table 5. Truth Table for the ADG823


IN1	IN2	Switch S1	Switch S2
0	0	Off	On
0	1	Off	Off
1	0	On	On
1	1	On	Off

ESD CAUTION


ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS


Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1	Source Terminal. This pin can be an input or output.
2	D1	Drain Terminal. This pin can be an input or output.
3	IN2	Logic Control Input.
4	GND	Ground (0 V) Reference.
5	S2	Source Terminal. This pin can be an input or output.
б	D2	Drain Terminal. This pin can be an input or output.
7	IN1	Logic Control Input.
8	V _{DD}	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_D, V_s

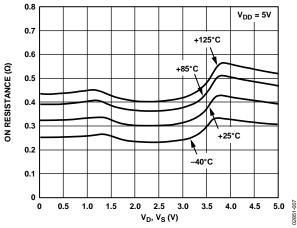


Figure 7. On Resistance vs. V_D , V_S for Different Temperatures, $V_{DD} = 5 V$

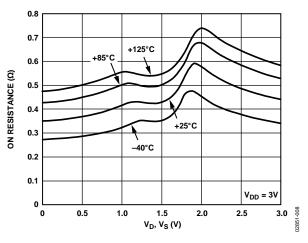


Figure 8. On Resistance vs. V_D , V_S for Different Temperatures, $V_{DD} = 3 V$

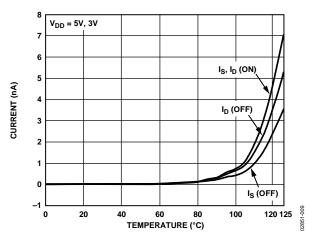


Figure 9. Leakage Current vs. Temperature

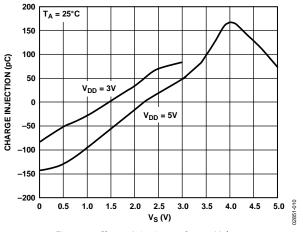
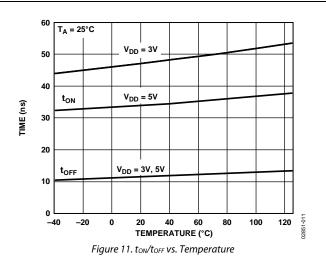
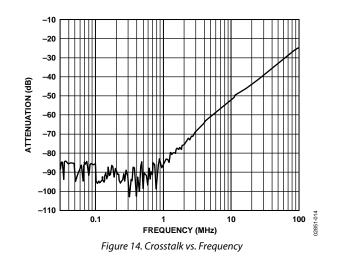
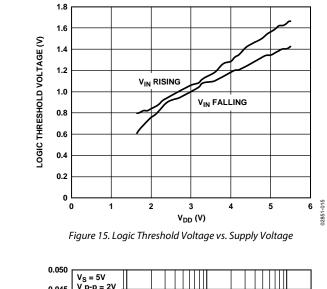





Figure 10. Charge Injection vs. Source Voltage

0

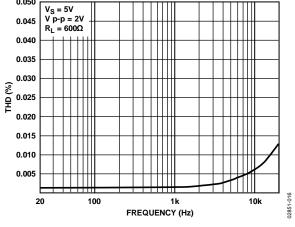
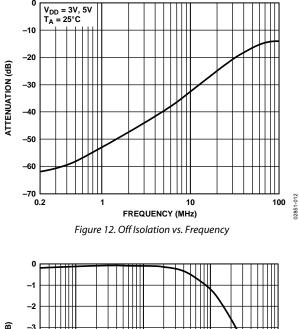



Figure 16. THD vs. Frequency

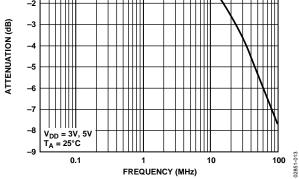
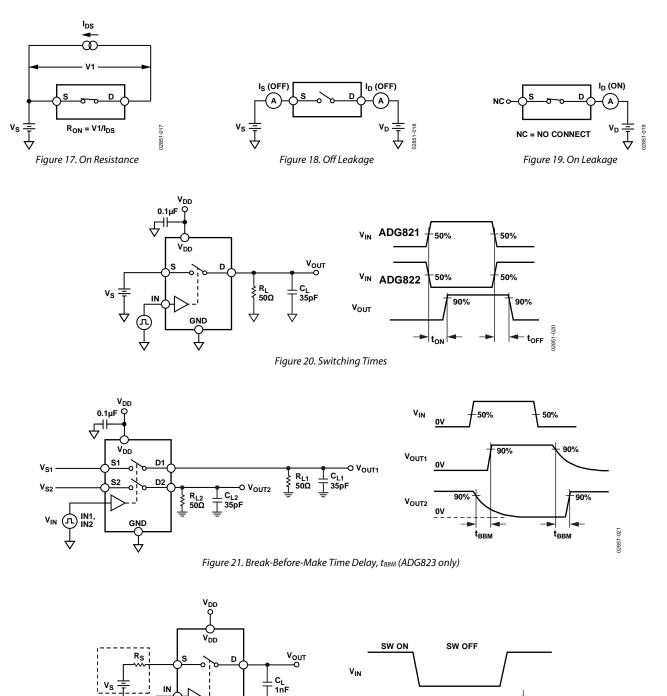



Figure 13. On Response vs. Frequency

TEST CIRCUITS

Vout

GND

4 V

(л

Δνουτ

02851-022

 $\mathbf{Q}_{\mathsf{INJ}} = \mathbf{C}_{\mathsf{L}} \times \Delta \mathbf{V}_{\mathsf{OUT}}$

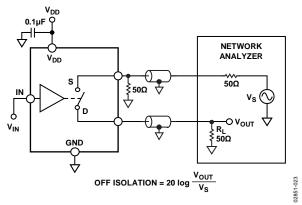


Figure 23. Off Isolation

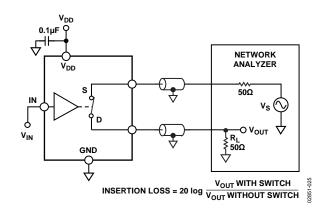
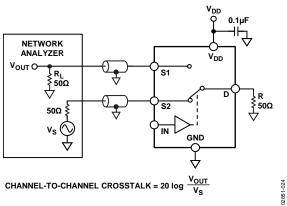



Figure 25. Bandwidth

V_{OUT} Vs CHANNEL-TO-CHANNEL CROSSTALK = 20 log

Figure 24. Channel-to-Channel Crosstalk

TERMINOLOGY

VDD

Most positive power supply potential.

GND

Ground (0 V) reference.

IDD Positive supply current.

S

Source terminal. May be an input or output.

D

Drain terminal. May be an input or output.

IN Logic control input.

R_{ON} Ohmic resistance between Terminal D and Terminal S.

 ΔR_{ON}

On resistance match between any two channels (that is, $R_{ON} max - R_{ON} min$).

R_{FLAT}(ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off) Source leakage current with the switch off.

 $I_{D} \mbox{ (Off)} \label{eq:ID} \mbox{Drain leakage current with the switch off.}$

I_D, I_S (On) Channel leakage current with the switch on.

 $\mathbf{V}_{D}, \mathbf{V}_{S}$ Analog voltage on Terminal D and Terminal S.

 \mathbf{V}_{INL} Maximum input voltage for Logic 0.

 \mathbf{V}_{INH} Minimum input voltage for Logic 1. I_{INL} (I_{INH}) Input current of the digital input.

Cs (Off) Off switch source capacitance.

C_D (Off) Off switch drain capacitance.

C_D, C_s (On) On switch capacitance.

ton

Delay between applying the digital control input and the output switching on.

t_{OFF} Delay between applying the digital control input and the output switching off.

t_{BBM}

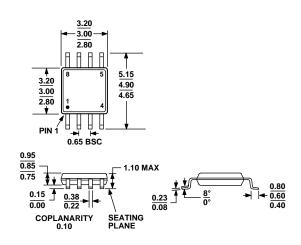
Off time or on time measured between the 90% points of both switches, when switching from one address state to another.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.


Off Isolation A measure of unwanted signal coupling through an off switch.

Bandwidth The frequency at which the output is attenuated by -3 dBs.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 26. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG821BRM	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SQB
ADG821BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SQB
ADG821BRMZ ¹	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SOP
ADG821BRMZ-REEL71	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SOP
ADG822BRM	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SRB
ADG822BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SRB
ADG822BRM-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SRB
ADG822BRMZ ¹	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1J
ADG822BRMZ-REEL71	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S1J
ADG823BRM	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SSB
ADG823BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SSB
ADG823BRMZ ¹	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SSB#
ADG823BRMZ-REEL71	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SSB#

¹ Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.

©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02851-0-4/08(A)

www.analog.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG821BRM ADG823BRMZ ADG821BRMZ-REEL7 ADG822BRMZ ADG823BRMZ-REEL7 ADG821BRMZ ADG822BRMZ-REEL7