

Ultralow Power Energy Harvester PMU with MPPT and Charge Management

Preliminary Technical Data

ADP5091/ADP5092

FEATURES

Boost regulator with maximum power point tracking (MPPT) with dynamic sensing or none-sensing mode
Hysteresis mode for best ultra light load efficiency
450 nA ultralow quiescent current (CBP ≥ MINOP)
360 nA ultralow quiescent current (CBP < MINOP)
Input voltage operation range from 80 mV to 3.3 V
Fast cold start from 380 mV (typical) with charge pump
Programmable shutdown point on MINOP pin based on input open circuit voltage (OCV)
150mA regulated output from 1.5V to 3.6V
Programmable voltage monitor (2 V to 5.2 V) to support

charging storage elements Optional BACK_UP power path management RF transmission friendly to shut down switcher temporarily via micro-controller (MCU) communication

APPLICATIONS

Photovoltaic (PV) cell energy harvesting TEG energy harvesting Industrial monitoring Self-powered wireless sensor devices Portable and wearable devices with energy harvesting

GENERAL DESCRIPTION

The ADP5091/92 is an intelligent integrated energy harvesting nano-powered management solution that converts dc power from PV cells or thermoelectric generators (TEGs). The device charges storage elements such as rechargeable Li-Ion batteries, thin film batteries, super capacitors, or conventional capacitors, and powers up small electronic devices and battery-free systems.

The ADP5091/92 provides efficient conversion of the harvested limited power from a 16 μ W to 600 mW range with sub- μ W operation losses. With the internal cold-start circuit, the regulator can start operating at an input voltage as low as 380 mV. After cold startup, the regulator is functional at an input voltage range of 80 mV to 3.3 V. An additional 150mA regulated output can be programmed by an external resistor divide or VID pin.

By sensing the input voltage, the control loop keeps the input voltage ripple in a fixed range to maintain stable dc-to-dc boost conversion. The OCV dynamic sensing mode and none-sensing mode both programming regulation points of the input voltage allow extraction of the highest possible energy from the harvester. A programmable minimum operation threshold

Rev. PrA

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change withhout notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TYPICAL APPLICATION CIRCUIT

(MINOP) enables boost shutdown during a low light condition. As a low light indicator for microprocessor, the LLD is the MIONP comparator output. In addition, the DIS_SW pin can temporarily shut down the boost regulator and is RF transmission friendly.

The charging control function of ADP5091/92 protects rechargeable energy storage, which is achieved by monitoring the battery voltage with programmable charging termination voltage and shutdown discharging voltage. In addition, a programmable PGOOD flag with programmable hysteresis monitors the SYS voltage.

An optional primary cell battery can be connected and managed by an integrated power path management control block that is programmable to switch the power source from the energy harvester, rechargeable battery, and primary cell battery.

The ADP5091/92 is available in a 24-lead LFCSP and is rated for a -40° C to $+125^{\circ}$ C junction temperature range.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADP5091/92

TABLE OF CONTENTS

Features	1
Applications	1
Typical Application Circuit	1
General Description	1
Specifications	3
Regulated Output Specifications	4
Absolute Maximum Ratings	6
Thermal Resistance	6

Preliminary Technical Data

ESD Caution	6
Pin Configuration and Function Descriptions	7
Detailed Functional Block Diagram	9
Typical Application Circuits	10
Factory Programmable Options	12
Outline Dimensions	13
Ordering Guide TBD	13

SPECIFICATIONS

 $V_{IN} = 1.2 \text{ V}, V_{SYS} = V_{BAT} = 3 \text{V}, T_{I} = -40^{\circ}\text{C}$ to 125°C for minimum/maximum specifications and $T_{A} = 25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. External components L = 22 μ H, $C_{IN} = 4.7 \mu$ F, $C_{SYS} = 4.7 \mu$ F.

Table 1.						
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
QUIESCENT CURRENT						
Operating Quiescent Current of SYS Pin	Iq_sys	REG_D0=low, REG_D1=low		450		nA
$(V_{IN} > V_{CBP} \ge V_{MINOP})$		REG_D0=high, REG_D1= low		488		nA
		REG D0=low, REG D1=high		520		nA
		BEG D0 = high BEG D1 = high		500		nA
Slooping Quiescent Current of SVS Din		REG_DO= low REG_D1= low		260		54
	IIQ_SLEEP_SYS	REG_D0=10W, REG_D1=10W		300		ПА
(V _{CBP} < V _{MINOP})						
COLD-START CIRCUIT						
Minimum Input Voltage for Cold-Start	VIN_COLD	$V_{SYS} = 0 V, 0^{\circ}C < T_A < 85^{\circ}C$		380	440	mV
Minimum Input Power for Cold-Start	P _{IN_COLD}			16		μW
End of Cold-Start Operation Threshold	V _{SYS_TH}		1.8	1.93	2.03	V
End of Cold-Start Operation Hysteresis	Vsys_hys			125		mV
BOOST REGULATOR						.,
Input Voltage Operation Range	VIN	Cold-start completed	0.1		3.3	V
Input Power Operation Range	Pin	Cold-start completed, $V_{IN} = 3 V$		2.1	600	mw
SYS Inteshold of Starting Charging BAI	Vsys_chg			2.1		V
BAT	VSYS_CHG_HYS			150		mv
Input Peak Current	IIN_PEAK	Factory trim, 1 bit (200mA, 300mA)		200	300	mA
Low Cide Cuitele en Desistence		Die te sie erste		300	400 TDD	mA
Low-Side Switch on Resistance	RLS_DS_ON	Pin-to-pin measurement		0.5	IRD	Ω
High-Side Switch on Resistance	RHS_DS_ON	Pin-to-pin measurement		1	IBD	Ω
DIS SWItch on Resistance	RSYS_DS_ON		1	0.48	0.70	12
DIS_SW High voltage			1		0.5	v
DIS_SW Dolay				1	0.5	V
	CDIS_DELAY			I		μs
VIN Open Circuit Voltage Sampling	Type event	Factory trim 2 bit (45 85 165 325)		16		s
Cycle	· VOC_CICLE			10		5
VIN Open Circuit Voltage Sampling Time	T _{VOC_SAMPL}			256		ms
MINOP Bias Current	IMINOP		1.45	2	2.55	μA
MINOP Operation Voltage Range of Dynamic MPPT sensing Mode	V _{MINOP_DSM}				1.5	V
MINOP Threshold of MPPT None- sensing Mode	V _{MINOP_NSM}			1.8		V
MPPT Bias Current of MPPT None- sensing Mode	Імррт		1.45	2	2.55	μΑ
LLD Pull High Resistor (ADP5091/92 Only)				11.4		kΩ
LLD Pull Low Resistor (ADP5091/92 Only)				11.4		kΩ
LLD High Voltage	Vlld_ih				REG_O UT	
Leakage Current at CBP Pin	ICBP_LEAK			10	100	pА
ENERGY STORAGE MANAGEMENT						
Internal Voltage of Charging BAT	VCHR			2.2		V
Internal Reference Voltage	VREF		0.98	1	1.02	V

Rev. PrA | Page 3 of 13

Preliminary Technical Data

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
Battery Stop Discharging Threshold	V _{BAT_SD}		2.0		$V_{\text{BAT}_\text{TERM}}$	V
Battery Stop Discharging Hysteresis Resistor	R _{BAT_SD_HYS}		65	103.5	150	kΩ
Battery Terminal Charging Threshold	V _{BAT_TERM}		2.2		5.2	V
Battery Terminal Charging Hysteresis	VBAT_TERM_HYS			3	3.7	%
PGOOD Rising Threshold at SYS Pin	V _{SYS_PG}		V_{BAT_SD}		$V_{\text{BAT}_\text{TERM}}$	V
PGOOD Pull High Resistor				11.4		kΩ
PGOOD Pull Low Resistor				11.4		kΩ
PGOOD High Voltage	$V_{\text{PGOOD}_{\text{IH}}}$				SYS	V
Battery Switches on Resistance	RBAT_SW_ON	Pin-to-pin measurement	TBD	0.6	TBD	Ω
Battery Source Current	IBAT				1	А
Leakage Current at BAT Pin	IBAT_LEAK	$V_{BAT} = 2 V, V_{BAT_SD} = 2.2 V, V_{SYS} = 2 V$		15	50	nA
		$V_{BAT} = 3.3 \text{ V}, V_{BAT_SD} = 2.2 \text{ V}, V_{SYS} = 0 \text{ V}$		0.5	20	nA
BACKUP POWER PATH						
Turning off BACK_UP Switch Threshold	V _{BK_TF}		2.0		$V_{\text{BAT}_\text{TERM}}$	V
Turning off BACK_UP Switch Hysteresis Resistor	R _{BK_TF_HYS}		65	103.5	150	kΩ
BACK_UP and BAT Comparator Offset	VBKP_OFFSET	$V_{SYS} \ge V_{SYS_{TH}}$	135	185	250	mV
BACK_UP and BAT Comparator Hysteresis	V _{BAT_HYS}	$V_{SYS} \ge V_{SYS_{TH}}$	55	75	100	mV
BACK_UP Current Capability	Івкр	$V_{SYS} \ge V_{SYS_{TH}}$		400	520	mA
Leakage Current at BACK_UP Pin	IBKP_LEAK	$V_{\text{BACK}_\text{UP}} = V_{\text{SYS}} = V_{\text{BAT}} = 3 \text{ V}$		6	18	nA
THERMAL SHUTDOWN						
Thermal Shutdown Threshold	T _{SHDN}	$V_{SYS} \ge V_{SYS_{TH}}$		135		°C
Thermal Shutdown Hysteresis	T _{HYS}			15		°C

REGULATED OUTPUT SPECIFICATIONS

 $V_{IN} = 1.2 \text{ V}, V_{SYS} = V_{BAT} = 3 \text{ V}, V_{REG_OUT} = 2V, L = 22 \text{ }\mu\text{H}, C_{IN} = 4.7 \text{ }\mu\text{F}, C_{SYS} = 4.7 \text{ }u\text{F}, C_{REG_OUT} = 4.7 \text{ }u\text{F}; T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ for minimum/maximum specifications and } T_A = 25^{\circ}\text{C} \text{ for typical specifications, unless otherwise noted.}$

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
REGULATED OUTPUT						
Output Options by VID Control	Vreg_out		1.5		3.6	V
REG_OUT OF BOOST MODE						
REG_OUT Wake Threshold	$V_{\text{REG}_{WAKE}}$		1.005	1.020	1.036	V
REG_OUT Sleep Threshold	VREG_SLEEP		1.015	1.030	1.046	V
High-Side Switches on Resistance	$R_{BST_DS_ON}$			1	TBD	Ω
Current Limit Threshold of Boost Mode	$V_{REG_BST_LIM}$			100	TBD	mA
REG_OUT OF LDO MODE						
REG_OUT Accuracy	Vreg_ldo	Ιουτ = 10 mA	-1		1	%
		$0 \ \mu A < I_{OUT} < 150 \ mA, V_{SYS} = (V_{REG_OUT} + 0.5 \ V)$	-3.5		3.5	%
Adjustable REG_OUT Accuracy	Vreg_ldo_adj	Ιουτ = 10 mA	0.99	1	1.01	V
		0 μA < Iout < 150 mA, Vsys = (Vreg_out + 0.5 V)	0.97	1	1.03	V
REG_OUT Dropout	$V_{\text{REG}_\text{DROP}}$	Ιουτ = 150 mA		100		mV
Current Limit Threshold of LDO Mode	IREG_LIM	$V_{SYS} \ge V_{SYS_{TH}}$	220	320		mA
Output Noise	OUTNOISE	10Hz to 100kHz		100		uV
						rms
Power Supply Rejection Ratio	PSRR	100Hz		65		dB
		1kHz		50		dB
REG_D0 and REG_D1						
Input Logic High	$V_{\text{REG}_\text{DX}_\text{IH}}$		1.2			V

Preliminary Technical Data

ADP5091/92

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
Input Logic Low	V _{REG_DX_IL}				0.4	V
Input Leakage Current	I _{REG_DX_LEAK}			20		nA
REG_GOOD (ADP5092 Only)						
REG_GOOD Rising Threshold	V _{REG_GOOD}			90		%
REG_GOOD Hysteresis	$V_{\text{REG}_{GOOD}_{HYS}}$			5		%
REG_GOOD Pull High Resistor				11.4		kΩ
REG_GOOD Pull Low Resistor				11.4		kΩ
REG_GOOD High Voltage	$V_{\text{REG}_{GOOD}_{IH}}$				REG_O	
					UT	

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
VIN, MPPT, CBP, MINOP	–0.3 V to +3.6 V
DIS_SW, TERM, SETPG,SETSD, SETBK, PGOOD, PG_HYS, REF, REG_D0, VID, REG_D1, LLD to AGND SW, SYS, BAT, BACK_UP, REG_OUT, REG_FB to PGND	–0.3 V to +6.0 V
PGND to AGND	–0.3 V to +0.3 V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{IA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4

Package Type	θ」Α	οισ	Unit
24-Lead LFCSP Package	TBD	TBD	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADP5091/92

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. ADP5091 LFCSP Package Pin Configuration

Figure 3. ADP5092 LFCSP Package Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	REF	Provides Voltage Reference for the SETSD, SETPG, SETBK and TERM Pins.
2	SETSD	Shutdown Setting. This pin sets the shutdown discharging voltage based on the BAT node voltage level.
3	SETBK	Sets BACK_UP disabled threshold monitoring BAT voltage. Connect this pin to AGND without BACK_UP storage element.
4	TERM	Termination Charging Voltage. This pin sets the termination charging voltage based on the BAT node voltage level.
5	SETPG	Sets Power Good Voltage Based on SYS Node Voltage Level.
6	SETHYST	Sets PGOOD Falling Hysteresis. Resistor divider input for PGOOD Falling Hysteresis.
7	AGND	Analog Ground.
8	CBP	Capacitor bypass. Samples and Holds the Maximum Power Point Level. Connect a 10 nF capacitor from this pin to AGND. When MPPT is disabled, tie CBP to an external reference that is lower than VIN. Analog Ground.
9	MPPT	Maximum Power Point Tracking. This pin sets the maximum power point tracking level for different energy harvesters. Place a resistor through AGND to set MPPT voltage at MINOP voltage higher than the threshold of MPPT None-sensing Mode.
10	VIN	Input Supply from Energy Harvester Source. Connect at least a 4.7 μ F capacitor as close as possible between this pin and PGND.
11	LLD	Low light density indicator to MCU. LLD pulls high at the MINOP voltage higher than CBP voltage. ADP5091 only.
	REG_GOOD	Regulated Output Power Good. ADP5092 only.
12	PGND	Power Ground.
13	SW	Switching Node for Inductive Boost Regulator with Connection to External Inductor. Connect a 22 μH inductor between this pin and VIN.
14	BAT	Places Rechargeable Battery or Super Cap as a Storage for SYS Output Supply.
15	REG_FB	Regulated Output Feedback Voltage Sense Input. Connect to a resistor divider from REG_OUT.
16	SYS	Output Supply to System Load. Connect at least a 4.7 μ F capacitor as close as possible between this pin and PGND.
17	REG_OUT	Regulated output. Connect at least a 1 μ F capacitor as close as possible between this pin and PGND.
18	BACK_UP	Optional Input Supply from the Backup Primary Battery Cell.
19	PGOOD	Output Supply to MCU. Maintains a pulled high signal when SYS is higher than SETPG threshold.
20	VID	Voltage Configuration Pin of REG_OUT. Set up to 8 different REG_OUT tied low through a resistor to AGND.
21	MINOP	Minimum Operating Power. Place a resistor on this pin to set the minimum operating input voltage level. The boost regulator starts switching when the CBP voltage exceeds the MINOP voltage. When MINOP voltage is above the threshold of MPPT None-sensing Mode, IC operates at a fixed MPPT ratio. Connect this pin through AGND to disable MINOP function.

Preliminary Technical Data

Pin No.	Mnemonic	Description
22	DIS_SW	Control Signal from MCU or RF Transceiver to Stop Switching Boost Charger.
23	REG_D1	Regulated output working mode set.
24	REG_D0	Regulated output working mode set.
	EPAD	Exposed Pad. The exposed pad must be connected to AGND.

ADP5091/92

DETAILED FUNCTIONAL BLOCK DIAGRAM

Figure 4. Detailed Functional Block Diagram

TYPICAL APPLICATION CIRCUITS

Figure 5. The ADP5091/92-Based Energy Harvester Wireless Sensor Application with Solarprint 0.5 V 450 μa PV-Cell as the Harvesting Energy Source, Shoei Electronics Polyacene Coin Type Capacitor PAS409HR as the Harvested Energy Storage, and Panasonic Primary Li-Ion Coin Cell CR2032 as the Backup Battery.

Figure 6. The ADP5091/92-Based Energy Harvester Circuit with a Thermo Electric Generator as the Harvesting Energy Source, Shoei Electronics Polyacene Coin Type Capacitor Pas409hr as the Harvested Energy Storage, and Panasonic Primary Li-Ion Coin Cell Cr2032 as the Backup Battery.

Rev. PrA | Page 10 of 13

Preliminary Technical Data

Figure 7. The ADP5091/92-Based Energy Harvester Circuit with a Piezoelectric Generator as the Harvesting Energy Source, Shoei Electronics Polyacene Coin Type Capacitor Pas409hr as the Harvested Energy Storage, and Panasonic Primary Li-Ion Coin Cell Cr2032 as the Backup Battery.

Figure 8. PGOOD Function Determines the Time to Enable the System Load

Rev. PrA | Page 11 of 13

FACTORY PROGRAMMABLE OPTIONS

To order a device with options other than the default options, contact your local Analog Devices sales or distribution representative.

Table 6. Input Current Limit Options

Option	Description
Option 0	200 mA (default)
Option 1	300 mA

Table 7. VIN Open Circuit Voltage Sampling Cycle Options

Option	Description
Option 0	4 s (default)
Option 1	8 s
Option 2	16 s
Option 3	32 s

OUTLINE DIMENSIONS

(CP-24-10) Dimensions shown in millimeters

ORDERING GUIDE TBD

Model ¹	Temperature Range	Package Description	Package Option
ADP5091ACPZ-R7	-40°C to + 125°C	24-Lead LFCSP_WQ	CP-24-10
ADP5092ACPZ-R7	-40°C to + 125°C	24-Lead LFCSP_WQ	CP-24-10
ADP5091-EVALZ		Evaluation Board	
ADP5092-EVALZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

s and wrers. ((PrA) ANALOG DEVICES

www.analog.com

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR14145-0-1/16(PrA)

Rev. PrA | Page 13 of 13

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: ADP5092ACPZ-1-R7 ADP5091ACPZ-1-R7