

Quad 8-Bit CMOS D/A Converter with Internal 10 V Reference

DAC-8426

1.1 Scope.

This specification covers the detail requirement for a quad 8-bit CMOS digital-to-analog converter with output voltage amplifiers and internal 10 V voltage reference. The internal latches provide direct interface for most microprocessors. The DAC-8426 operates with either a dual or single power supply.

It is highly recommended that this data sheet be used as a baseline for new military or aerospace specification control drawings.

1.2 Part Number.

The complete part numbers per Table 1 of this specification is as follows:

Device Part Number Package
-1 DAC-8426AR/883 R

1.2.3 Case Outline.

Letter Case Outline (Lead Finish per MIL-M-38510)

R 20-Lead Ceramic Dual-in-Line Package (Cerdip)

1.3 Absolute Maximum Ratings. $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

o , n	
V _{DD} to AGND or DGND	0.3 V, +17 V
V _{SS} to AGND or DGND	$\cdots \cdots -7$ V, V_{DD}
V_{DD} to V_{SS}	$\cdots \cdots $
AGND to DGND	$\cdots \cdots -0.3 \text{ V}, +5 \text{ V}$
Digital Input Voltage to DGND	$\dots \dots $
V _{REFOUT} to AGND	$\cdots \cdots -0.3 \text{ V}, \text{ V}_{DD}$
V _{OUT} to AGND	V_{SS} , V_{DD}
Power Dissipation to +75°C	500 mW
Derate above 75°C by	
Operating Temperature Range	
Junction Temperature Range (T _J)	65°C to +150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering 60 sec)	+300°C

1.5 Thermal Characteristics.

Thermal Resistance $\theta_{JC} = 7^{\circ}\text{C/W}$ $\theta_{JA} = 70^{\circ}\text{C/W max}$

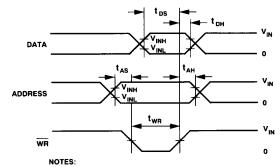
DAC-8426 — SPECIFICATIONS

Table 1.

		Device	Limits		Group A		
Test	Symbol	Types	Min	Max	Subgroups	Conditions ¹	Units
Resolution	N	All	8		1, 2, 3	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	Bits
Total Unadjusted Error	TUE	-1		±1	1, 2, 3	Includes Reference ²	LSB
,		-2		±2	1, 2, 3	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	
Relative Accuracy	INL	-1		±1/2	1, 2, 3	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	LSB
		-2	ļ	±1	1, 2, 3		
Differential Nonlinearity	DNL	All		±1	1, 2, 3	Note 3; $T_A = +25^{\circ}\text{C}$, -55°C & $+125^{\circ}\text{C}$	LSB
Zero Scale Error	V _{ZSE}	All		20	1, 2, 3	$V_{SS} = -5 \text{ V};$ $T_A = +25^{\circ}\text{C}, -55^{\circ}\text{C \& } +125^{\circ}\text{C}$	mV
Reference Output Voltage	V _{REFOUT}	-1	9.96	10.04	1, 2, 3	No Load;	V
		-2	9.92	10.08		$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	
Reference Load Regulation	LD_{REG}	All		0.1	1, 2, 3	$\Delta I_L = 10 \text{ mA};$ $T_A = +25^{\circ}\text{C}, -55^{\circ}\text{C \& } +125^{\circ}\text{C}$	%/mA
Reference Line Regulation	LN _{REG}	All		0.04	1, 2, 3	$\Delta V_{DD} = \pm 10\%;$ $T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	%/mA
Reference Output Current	I _{REFOUT}	All	5		1, 2, 3	$\Delta V_{REFOUT} < 40 \text{ mV};$ $T_A = +25^{\circ}\text{C}, -55^{\circ}\text{C \& } +125^{\circ}\text{C}$	
Logic Input "0"	V _{INL}	All		0.8	1, 2, 3	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	V
Logic Input "1"	V _{INH}	All	2.4		1, 2, 3	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	V
Logic Input Current	I _{IN}	All		10	1, 2, 3	$V_{IN} = 0 \text{ V or } V_{DD};$ $T_A = +25^{\circ}\text{C}, -55^{\circ}\text{C \& } +125^{\circ}\text{C}$	μА
Positive Supply Current ³	I_{DD}	All		14	1, 2, 3	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	mA
Negative Supply Current ³	I _{ss}	All		10	1, 2, 3	Dual Supply, $V_{SS} = -5 \text{ V}$; $T_A = +25^{\circ}\text{C}, -55^{\circ}\text{C \& } +125^{\circ}\text{C}$	mA
Power Supply Sensitivity	PSS	All		0.01	1, 2, 3	$\Delta V_{DD} = \pm 10\%;$ $T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	%/%
Output Source Current	I _{OUT}	Ail	10		1, 2, 3	Digital Inputs All Ones; T _A = +25°C, -55°C & +125°C	mA
Output Sink Current	I _{OUT} -	All	0.35		1, 2, 3	Digital Inputs All Zeros	mA
V _{OUT} Settling Time (Positive or Negative)	t _S	All		5	9	To $\pm 1/2$ LSB; $T_A = +25^{\circ}C$	μs
Address to Write Setup Time	t _{AS}	All	0		9, 10, 11	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	ns
Address to Write Hold Time	t _{AH}	All	0		9, 10, 11	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	ns
Data Valid to Write Setup Time	t _{DS}	All	70		9, 10, 11	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	ns
Data Valid to Write Hold Time	t _{DH}	All	10		9, 10, 11	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	ns
Write Pulse Width	t _{WR}	All	50		9, 10, 11	$T_A = +25^{\circ}C, -55^{\circ}C \& +125^{\circ}C$	ns
Minimum Load Resistance	R _{L(MIN)}	All	2		1, 2, 3	Digital Inputs All Ones; T _A = +25°C, -55°C & +125°C	kΩ
V _{OUT} Slew Rate	SR	All	2.5		7	$T_A = +25^{\circ}C$	V/µs

NOTES $^{1}V_{DD}=+15~V\pm10\%,~AGND=0~V,~DGND=0~V,~V_{SS}=0~V$ unless otherwise specified. $^{2}Includes~full-scale~error,~relative~accuracy,~and~zero~code~error.$ $^{3}Digital~inputs~V_{IN}=V_{INL}~or~V_{INH};~V_{OUT}~and~V_{REFOUT}~unloaded.$

Table 2. Electrical Test Requirements for Class B Devices


MIL-STD-883 Test Requirements	Subgroups (See Table 3)		
Interim Electrical Parameters (Pre Burn-In)	1		
Final Electrical Test Parameters	1,* 2, 3		
Group A Test Requirements	1, 2, 3, 7, 9, 10, 11		

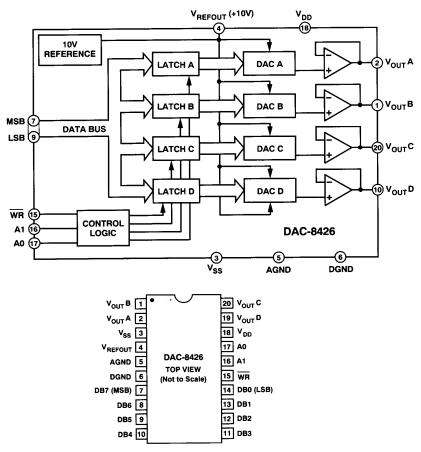
NOTE

Table 3. Control Table

Logi	Logic Control WR A1 A0		DAC-8426		
WR			Operation		
H	X	X	No Operation		
			Device Not Selected		
L	L	L	DAC A Transparent		
<u>_</u>	L	L	DAC A Latched		
L	L	Н	DAC B Transparent		
<u></u>	L	Н	DAC B Latched		
L	Н	L	DAC C Transparent		
<u>_</u>	Н	L	DAC C Latched		
L	Н	Н	DAC D Transparent		
<u></u>	Н	Н	DAC D Latched		

L = Low State, H = High State, X = Don't Care.

- 1. ALL INPUT SIGNAL RISE AND FALL TIMES ARE MEASURED FROM THE 10% TO 90% OF V_{DD} ($t_r = t_f = 20$ ns OVER THE V_{DD} RANGE)
- 2. TIMING REFERENCE LEVEL IS FROM V_{INH} + V_{INL}

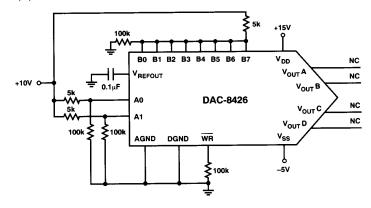

3. V_{IN} = 5V

Write Timing Diagram

^{*}PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

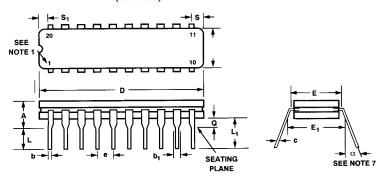
DAC-8426

3.2.1 Functional Block Diagram and Terminal Assignments.



3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group 80.


4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

20-Lead Ceramic DIP

(R Suffix)

20-Lead Ceramic DIP (R Suffix)

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	
b ₁	0.030	0.070	0.76	1.78	2
С	0.008	0.015	0.20	0.38	
D		1.060		26.92	4
E	0.220	0.310	5.59	7.87	4
E ₁	0.290	0.320	7.37	8.13	7
е	0.100 BSC		2.54 BSC		5
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
a	0.015	0.060	0.38	1.52	3
S		0.080		2.03	6
Sı	0.005		0.13		6
α	0°	15°	0°	15°	

NOTES

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- The minimum limit for dimension b₁ may be 0.023" (0.58 mm) for all four corner leads only.
- 3. Dimension ${\bf Q}$ shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. The basic lead spacing is 0.100" (2.54 mm) between centerlines.
- 6. Applies to all four corners.
- 7. Leads center when α is 0°. E₁ shall be measured at the centerline of the leads.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

DAC8426FP DAC8426AR/883C DAC8426EPZ DAC8426FS DAC8426FPZ DAC8426FSZ