AMMP-6125

10-24 GHz x2 Frequency Multiplier

Data Sheet

Description

The AMMP-6125 is an easy-to-use surface mounted packaged integrated frequency multiplier (x2) that operates from 10 to 24 GHz output frequency. It has integrated amplification, matching, harmonic suppression, and bias networks. 15 dBc min. of harmonic rejection is delivered. The input/output are matched to 50 Ω and fully DC blocked. This MMIC is a cost effective alternative to hybrid (discrete-FET) amplifiers that require complex tuning and assembly process.

Functional Block Diagram

Pin	Function			
1	Vd1			
2	Vg			
3	Vd2			
4	RF_OUT			
5	NC			
6	NC			
7	NC			
8	RF_IN			

Features

- 5 x 5 mm surface mount package
- Wide frequency operation: 10-24 GHz (Output)
- 50 Ω Input and Output Match
- -40° C to +85° C operation
- Output Power of +21.5 dBm Typical
- Fo, 3xFo, 4Fo Rejection: 15 dBc min

Applications

- Microwave Radio Systems
- VSAT
- Satellite Up/Down Link
- Test Equipment

Package Diagram

TOP VIEW

Attention: Observe Precautions for handling electrostatic sensitive devices. ESD Machine Model: 40V ESD Human Body Model: 150V Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

ELECTRICAL SPECIFICATIONS

Table 1. Absolute Maximum Ratings

Parameter		Specificati	ons			
Description		Min.	Max.	Unit	Comments	
Drain Voltage	Vd1		5	V		
	Vd2		6	V		
Gate Voltage	Vg	-2.5	0	V		
CW Input Power			10	dBm		
MSL			MSL2			
Channel Temperature			150	°C		
Storage Temperature		-65	150	°C		

Table 2. Recommended Operating Range

Parameter			Specifica	tions			
Descripti	on	Pin	Min.	Typical	Max.	Unit	Comments
Drain Vo	ltage	Vd1		3.5	4.0	V	
		Vd2		5.0	5.5	V	
Gate Vol	tage	Vg	-1.4	-1.2	-1	V	
Frequency range		Input	5		12	GHz	
		Output	10		24	GHz	
Input Po	wer		-6	0	+4	dBm	
Quiescent Current		I _{dsq1}		100		mA	Vd1 = 3.5 V
		I _{dsq2}		110		mA	Vd2 = 5 V
Thermal	Resistance, θ_{ch-b}			26.4		°C/W	
Case Ten	nperature		-40		+85	°C	
ESD	Human Body Model			150	V		
	Machine Model			40	V		

Table 3. RF Electrical Characteristics

All data measured on a Rogers 4003 demo board at Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V, T_A = 25°C, Pin = 0 dBm and 50 Ω at all ports, unless otherwise specified.

		Performance				
Parameter		Min.	Typical	Max.	Unit	Comments
Output Power	Freq = 10 GHz	20	22.8		dBm	
	Freq = 17 GHz		22.1			
	Freq = 24 GHz		21.5			
Fundamental Suppression	Freq = 5 GHz	15	21		dBc	f _{in} = 5, 8.5, 12 GHz
	Freq = 8.5 GHz		25.9			
	Freq = 12 GHz		29.5			
3 rd Harmonic Suppression	Freq = 15 GHz	15	18.3		dBc	f _{in} = 5, 8.5, 12 GHz
	Freq = 25.5 GHz		27.2			
	Freq = 36 GHz		25.2			
4 th Harmonic Suppression			15		dBc	
Input Return Loss			-12		dB	
Output Return Loss			-10		dB	
Drain Current	ld1		115		mA	P _{out} = 21 dBm
	ld2		145		mA	
Gate Current (lg)			-5		μA	

Note:

1. Output Power, Fundamental Suppression and 3rd Harmonic Suppression measurement accuracy is subjected to the tolerance of ± 0.5 dBm, \pm 1 dBc & \pm 1 dBc respectively.

Pout @ 10 GHz, Mean = 22.8 dBm, LSL = 20 dBm

Product Consistency Distribution Charts at 5 GHz, 8.5 GHz and 12 GHz, Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V (Sample size of 2,800 pieces) (Continued)

FS @ 8.5 GHz, Mean = 25.9 dBc, LSL = 15 dBc

Harmonics @ 36 GHz, Mean = 25.2 dBc, LSL = 15 dBc

Selected Performance Plots

All data measured on a Rogers 4003 demo board at Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V, T_A = 25° C, Pin = 0 dBm and 50 Ω at all ports, unless otherwise specified.

Figure 1. Output Power vs. Output Frequency @ Pin = 0 dBm

Figure 3. Output Power vs. Output Frequency @ Pin = -6 dBm over Temperature

Figure 5. Output Powervs. Output Frequency @ Pin = +2 dBm over Temperature

Figure 2. Output Power [2H] vs Output Frequency Over Pin

Figure 4. Output Power vs. Output Frequency @ Pin = 0 dBm over Temperature

Figure 6. Output Power vs. Output Frequency @ Pin = +4dBm over Temperature

Figure 7. Input and Output Return Loss at Pin = 0 dBm

Figure 8. Total Drain Current vs. Pin

Figure 9. Fundamental [1H] Suppression vs Output Frequency at Variable Pin

Figure 10. 3rd Harmonic [3H] Suppression vs Output Frequency at Variable Pin

Figure 12. Output Power [2H] vs Pin at variable Output Frequency

Figure 13. Output Power [2H] vs Input Power @ Fout = 10 GHz

Figure 14. Fundamental Suppression [1H] vs Input Power @ Fout = 10 GHz

Figure 16. Fundamental Suppression [1H] vs Input Power @ Fout = 14 GHz

Figure 18. Fundamental Suppression [1H] vs Input Power @ Fout = 18 GHz

Figure 15. Output Power [2H] vs Input Power @ Fout = 14 GHz

Figure 17. Output Power [2H] vs Input Power @ Fout = 18 GHz

Figure 19. Output Power [2H] vs Input Power @ Fout = 22 GHz

Figure 20. Fundamental Suppression [1H] vs Input Power @ Fout = 22 GHz

Figure 21. Output Power [2H] vs Input Power @ Fout = 26 GHz

Figure 22. Fundamental Suppression [1H] vs Input Power @ Fout = 26 GHz

Evaluation Board Description and Application Circuit for AMMP-6125

Table 4. Pin Description

Pin #	Function	Biasing	Comment
GND	GND		
1	Vd1	3.5 V	100 mA (measure current)
2	Vg	-1.2 V	5 μA (measure current)
3	Vd2	5.0 V	110 mA (measure current)
GND	GND		

Recommended quiescent DC bias condition for optimum power and linearity performance is Vd1 = 3.5 V, Vd2 = 5 V and Vg = -1.2 V. The gate voltage, Vg, biases the doubling circuit only; it does not adjust the amplifier bias current. Minor improvements in the AMMP-6125's output power and fundamental suppression can be obtained by adjusting Vg from -1.0 V to -1.5 V.

Output Power [2H] (dBm)

Package, Tape & Reel, and Ordering Information

Please refer to Avago Technologies Application Note 5521, AMxP-xxxx production Assembly Process (Land Pattern B).

Part Number Ordering Information

	Devices per		
Part Number	Container	Container	
AMMP-6125-BLKG	10	Antistatic bag	
AMMP-6125-TR1G	100	7" reel	
AMMP-6125-TR2G	500	7" reel	

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2011-2016 Avago Technologies. All rights reserved. AV02-3208EN - March 23, 2016

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Avago Technologies: <u>AMMP-6125-TR1G</u> <u>AMMP-6125-BLKG</u> <u>AMMP-6125-TR2G</u>