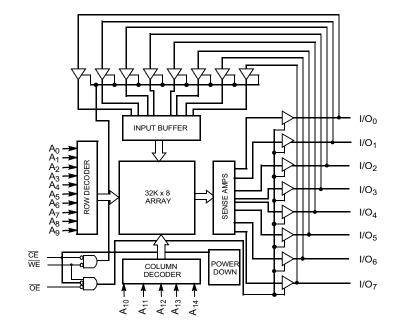


CY7C1399BN

256-Kbit (32 K × 8) Static RAM

Features

- Temperature Ranges
 □ Industrial: -40 °C to 85 °C
 □ Commercial: 0 °C to 70 °C
 □ Automotive-A: -40 °C to 85 °C
- Single 3.3 V power supply
- Ideal for low-voltage cache memory applications
- High speed: 12 ns
- Low active power □ 180 mW (max)
- Low-power alpha immune 6T cell
- Available in pb-free and non pb-free plastic SOJ and TSOP- I packages


Functional Description

The CY7C1399BN is a high-performance 3.3 V CMOS Static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an <u>active LOW Chip Enable (CE)</u> and active LOW Output Enable (\overline{OE}) and tristate drivers. The device has an automatic power-down feature, reducing the power consumption by more than 95% when deselected.

An active LOW Write Enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$ active LOW, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and Write Enable (WE) is HIGH. The CY7C1399BN is available in 28-pin standard 300-mil-wide SOJ and TSOP Type I packages.

For a complete list of related documentation, click here.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 001-06490 Rev. *H 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised October 24, 2015

CY7C1399BN

Contents

Pin Configurations	3
Selection Guide	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	5
Data Retention Waveform	5
Switching Characteristics	6
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	12
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	16
Worldwide Sales and Design Support	16
Products	16
PSoC® Solutions	16
Cypress Developer Community	16
Technical Support	16

Pin Configurations

Figure 1. 28-pin TSOP pinout (Top View)

TSO Top Vi	-
$22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 $	21 A ₀ 20 CE 19 I/O7 18 I/O6 17 I/O5 16 I/O3 14 GND 13 I/O2 12 I/O1 11 I/O2 12 I/O1 10 A14 9 A13 8 A12

Selection Guide

Description	Condition	-12	-15
Maximum access time (ns)		12	15
Maximum operating current (mA)		55	50
Maximum CMOS standby current (µA)	Commercial	500	-
	Commercial (L)	50	-
	Industrial	500	500
	Automotive-A	-	500

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature	–65 °C to +150 °C
Ambient temperature with power applied	–55 °C to +125 °C
Supply voltage on V_{CC} to relative GND ^[1]	–0.5 V to +4.6 V
DC voltage applied to outputs in high Z State ^[1]	–0.5 V to V _{CC} + 0.5 V
DC input voltage [1]	–0.5 V to V_{CC} + 0.5 V

Output current into outputs (LOW) 20 mA
Static discharge voltage (per MIL-STD-883, Method 3015)>2001 V
Latch-up current

Operating Range

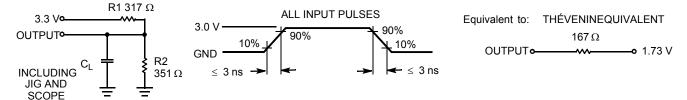
Range	Ambient Temperature	V _{cc}
Commercial	0 °C to +70 °C	$3.3~V\pm300~mV$
Industrial	–40 °C to +85 °C	
Automotive-A	–40 °C to +85 °C	

Electrical Characteristics

Over the Operating Range

Parameter ^[1]	Description	Test Conditions		-12		-15		Unit
Farameter	Description			Min Max		Min Max		Unit
V _{OH}	Output HIGH voltage	Min V _{CC} , $I_{OH} = -2$.) mA	2.4	-	2.4	-	V
V _{OL}	Output LOW voltage	Min V _{CC} , I_{OL} = 4.0 n	ıA	-	0.4	-	0.4	V
V _{IH}	Input HIGH voltage			2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL} ^[1]	Input LOW voltage			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input leakage current			-1	+1	-1	+1	μA
I _{OZ}	Output leakage current	$GND \le V_{IN} \le V_{CC}, C$	utput disabled	-5	+5	-5	+5	μA
I _{CC}	V _{CC} operating supply current	$Max V_{CC}, I_{OUT} = 0 mA, f = f_{MAX} = 1/t_{RC}$		-	55	-	50	mA
I _{SB1}	Automatic CE power-down	irrent – TTL inputs $V_{IN} \ge V_{IH}$, or	Commercial	-	5	-	_	mA
	current – TTL inputs		$V_{IN} \ge V_{IH}$, or $V_{IN} \le V_{IL}$,	Commercial (L)	-	4	-	-
		$f = f_{MAX}$	Industrial	-	5	-	5	mA
			Automotive-A	-	-	-	5	mA
I _{SB2}	Automatic CE Power-down	Max V _{CC} ,	Commercial	-	500	-	-	μA
	current – CMOS inputs ^[2]	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3 \text{ V},$	Commercial (L)	-	50	-	-	μA
			Industrial	-	500	_	500	μΑ
		$V_{IN} \geq V_{CC} - 0.3$ V, or $V_{IN} \leq 0.3$ V,	Automotive-A	-	_	_	500	μA
		$ \begin{array}{l} WE \geq V_{CC} - 0.3 \ V \ or \\ WE \leq 0.3 \ V, \\ f = f_{MAX} \end{array} $						

Notes
 Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns.
 Device draws low standby current regardless of switching on the addresses.

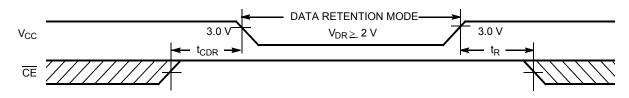


Capacitance

Parameter ^[3]	Description	Test Conditions	Max	Unit
C _{IN} : Addresses	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	5	pF
C _{IN} : Controls			6	pF
C _{OUT}	Output capacitance		6	pF

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms ^[4]


Data Retention Characteristics

(Over the Operating Range - L version only)

Parameter	Description	Min	Max	Unit	
V _{DR}	V _{CC} for data retention		2.0	_	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR} = 2.0 V,$	0	20	μA
t _{CDR}	Chip deselect to data retention time	$CE \ge V_{CC} - 0.3 V,$ $V_{IN} \ge V_{CC} - 0.3 V \text{ or } V_{IN} \le 0.3 V$	0	_	ns
t _R	Operation recovery time		t _{RC}	-	ns

Data Retention Waveform

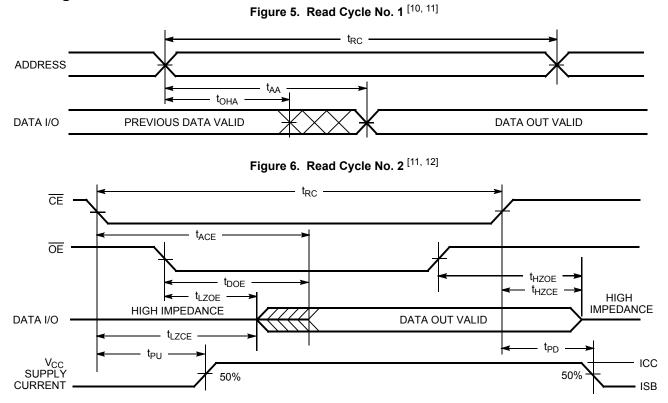
Figure 4. Data Retention Waveform

Notes

- 3. Tested initially and after any design or process changes that may affect these parameters.
- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and capacitance C_L = 30 pF.

Switching Characteristics

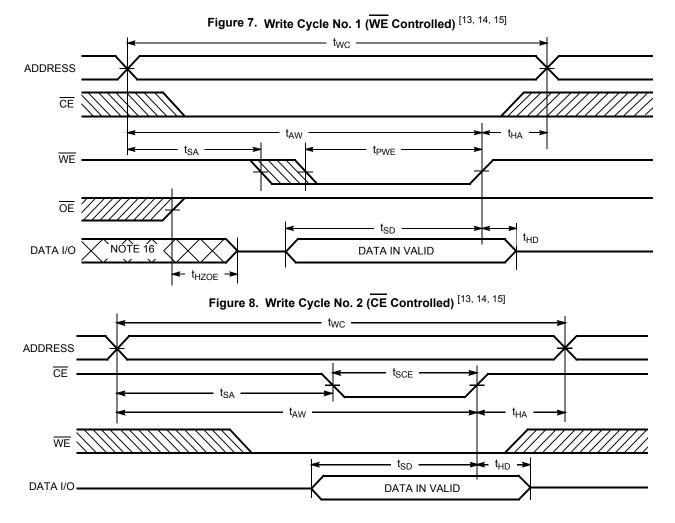
Over the Operating Range


Parameter ^[5]	Description	-	12	-15		11		
Parameter 191			Max	Min	Мах	Unit		
Read Cycle								
t _{RC}	Read cycle time	12	_	15	-	ns		
t _{AA}	Address to data valid	_	12	-	15	ns		
t _{OHA}	Data hold from address change	3	-	3	-	ns		
t _{ACE}	CE LOW to data valid	-	12	-	15	ns		
t _{DOE}	OE LOW to data valid	_	5	_	6	ns		
t _{LZOE}	OE LOW to low Z ^[6]	0	_	0	-	ns		
t _{HZOE}	OE HIGH to high Z ^[6, 7]	_	5	-	6	ns		
t _{LZCE}	CE LOW to low Z ^[6]	3	_	3	_	ns		
t _{HZCE}	CE HIGH to high Z ^[6, 7]	-	6	-	7	ns		
t _{PU}	CE LOW to power-up	0	_	0	-	ns		
t _{PD}	CE HIGH to power-down	-	12	-	15	ns		
Write Cycle ^{[8, 9}	9]	·				•		
t _{WC}	Write cycle time	12	_	15	-	ns		
t _{SCE}	CE LOW to write end	8	_	10	-	ns		
t _{AW}	Address setup to write end	8	_	10	-	ns		
t _{HA}	Address hold from write end	0	_	0	_	ns		
t _{SA}	Address setup to write start	0	_	0	_	ns		
t _{PWE}	WE pulse width	8	_	10	_	ns		
t _{SD}	Data setup to write end	7	_	8	-	ns		
t _{HD}	Data hold from write end	0	_	0	_	ns		
t _{HZWE}	WE low to high Z ^[8]	_	7	-	7	ns		
t _{LZWE}	WE high to low Z ^[6]	3	_	3	-	ns		

Notes

- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} best conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and capacitance C_L = 30 pF.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZCE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZCE} are specified with C_L = 5 pF as in AC Test Loads. Transition is measured ±500 mV from steady state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle No. 3 (WE Controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

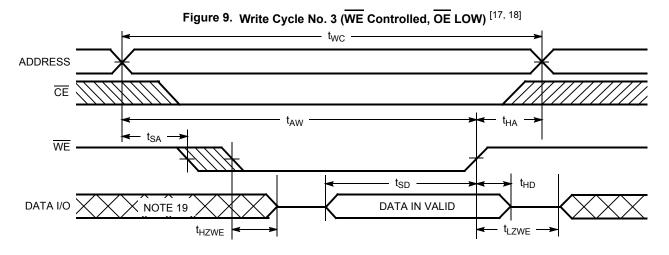
Switching Waveforms



Notes

10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 11. WE is HIGH for read cycle. 12. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)



Notes

- 13. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Notes

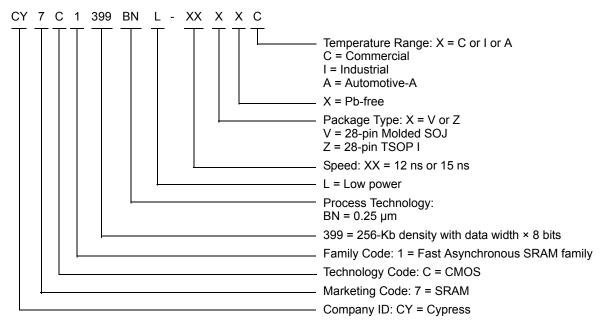
17. If CE goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state. 18. The minimum write cycle pulse width should be equal to the sum of t_{HZWE} and t_{SD} . 19. During this period, the I/Os are in the output state and input signals should not be applied.

Truth Table

CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output disabled	Active (I _{CC})

Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.


For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

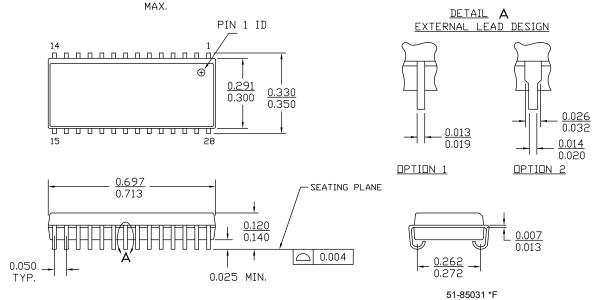
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1399BN-12ZXC	51-85071	28-pin TSOP I (Pb-free)	Commercial
	CY7C1399BNL-12ZXC		28-pin TSOP I (Pb-free)	
	CY7C1399BN-12VXI	51-85031	28-pin molded SOJ (Pb-free)	Industrial

Contact your local sales representative regarding availability of these parts.

Ordering Code Definitions

Package Diagrams

Figure 10. 28-pin SOJ (300 Mils) V28.3 (Molded SOJ V21) Package Outline, 51-85031


28 Lead (300 Mil) Molded SOJ V21

NDTE :

1. JEDEC STD REF MOO88

2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE

3. DIMENSIONS IN INCHES MIN.

Package Diagrams (continued)

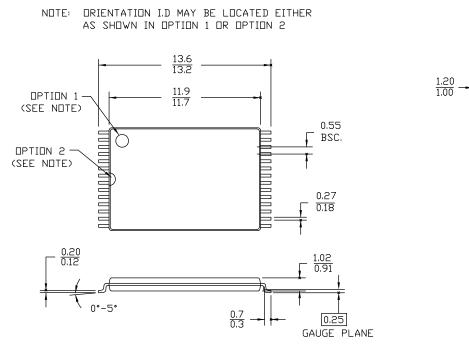


Figure 11. 28-pin TSOP I (8 × 13.4 × 1.2 mm) Z28 (Standard) Package Outline, 51-85071

DIMENSION IN MM MAX. MIN.

51-85071 *J

SEATING PLANE

0.20 0.05

8.1 7.9

Acronyms

Acronym	Description		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
TSOP	Thin Small Outline Package		
WE	Write Enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	megahertz	
μA	microampere	
mA	milliampere	
mV	millivolt	
mW	milliwatt	
ns	nanosecond	
pF	picofarad	
V	volt	
W	watt	

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	423877	NXR	See ECN	New data sheet.
*A	498575	NXR	See ECN	Added Automotive-A range related information in all instances across the document. Updated Electrical Characteristics: Removed I _{OS} parameter and its details. Updated Ordering Information.
*В	2896382	AJU	03/19/2010	Updated Ordering Information: Removed obsolete part numbers. Updated Package Diagrams.
*C	3053362	PRAS	10/08/2010	Updated Ordering Information: Removed pruned part numbers CY7C1399BNL-15VXC and CY7C1399BNL-15VXCT. Added Ordering Code Definitions.
*D	3383869	TAVA	09/26/2011	Rearranged sections for better clarity. Updated Features: Added Commercial Temperature Range related information. Updated Functional Description: Removed Note "For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the interner at www.cypress.com website." and its reference. Updated Switching Waveforms: Modified the notes in figures under Read cycle and Write cycle sections. Updated Package Diagrams. Added Acronyms and Units of Measure. Updated to new template.
*E	4121360	VINI	09/12/2013	Updated to new template. Completing Sunset Review.
*F	4540416	VINI	10/16/2014	Updated Switching Waveforms: Updated Note 18. Updated Package Diagrams: spec 51-85071 – Changed revision from *I to *J. Completing Sunset Review.
*G	4578447	VINI	01/16/2015	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Ordering Information: Removed the prune part numbers CY7C1399BN-12VXC and CY7C1399BN-15VXA. Updated Package Diagrams: spec 51-85031 – Changed revision from *E to *F. Updated to new template.
*H	4985705	NILE	10/24/2015	No technical updates. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-06490 Rev. *H

Revised October 24, 2015

All products and company names mentioned in this document may be the trademarks of their respective holders.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

<u>CY7C1399BN-12VXI</u> <u>CY7C1399BN-12VXIT</u> <u>CY7C1399BN-12ZXC</u> <u>CY7C1399BN-12ZXCT</u> <u>CY7C1399BN-15ZXIT</u> <u>CY7C1399BN-15ZXIT</u> <u>CY7C1399BNL-12ZXCT</u> <u>CY7C1399BNL-12ZXCT</u>