

August 2016

2N7000 / 2N7002 / NDS7002A N-Channel Enhancement Mode Field Effect Transistor

Features

- High Density Cell Design for Low R_{DS(ON)}
- Voltage Controlled Small Signal Switch
- Rugged and Reliable
- High Saturation Current Capability

Description

These N-channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while providing rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 400 mA DC and can deliver pulsed currents up to 2 A. These products are particularly suited for low-voltage, low-current applications, such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Ordering Information

Part Number	Marking	Package Packing Met		Min Order Qty / Immediate Pack Qty
2N7000	2N7000	TO-92 3L	Bulk	10000 / 1000
2N7000_D74Z	2N7000	TO-92 3L	Ammo	2000 / 2000
2N7000_D75Z	2N7000	TO-92 3L	Tape and Reel 2000 /	
2N7000_D26Z	2N7000	TO-92 3L	Tape and Reel	2000 / 2000
2N7002	702	SOT-23 3L	Tape and Reel 3000	
NDS7002A	712	SOT-23 3L Tape and Reel C		3000 / 3000

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_c = 25^{\circ}C$ unless otherwise noted.

Symbol	Devenetor		110:4		
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit
V _{DSS}	Drain-to-Source Voltage		V		
V _{DGR}	Drain-Gate Voltage ($R_{GS} \le 1 M\Omega$)		V		
V _{GSS}	Gate-Source Voltage - Continuous		V		
	Gate-Source Voltage - Non Repetitive (tp < 50 μ S)	±40			
Ι _D	Maximum Drain Current - Continuous	200	115	280	mA
	Maximum Drain Current - Pulsed	500	800	1500	
PD	Maximum Power Dissipation Derated above 25°C	400	200	300	mW
		3.2	1.6	2.4	mW/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range	-55 to 150 -65 to 150			°C
ΤL	Maximum Lead Temperature for Soldering Purposes, 1/16-inch from Case for 10 Seconds		300		°C

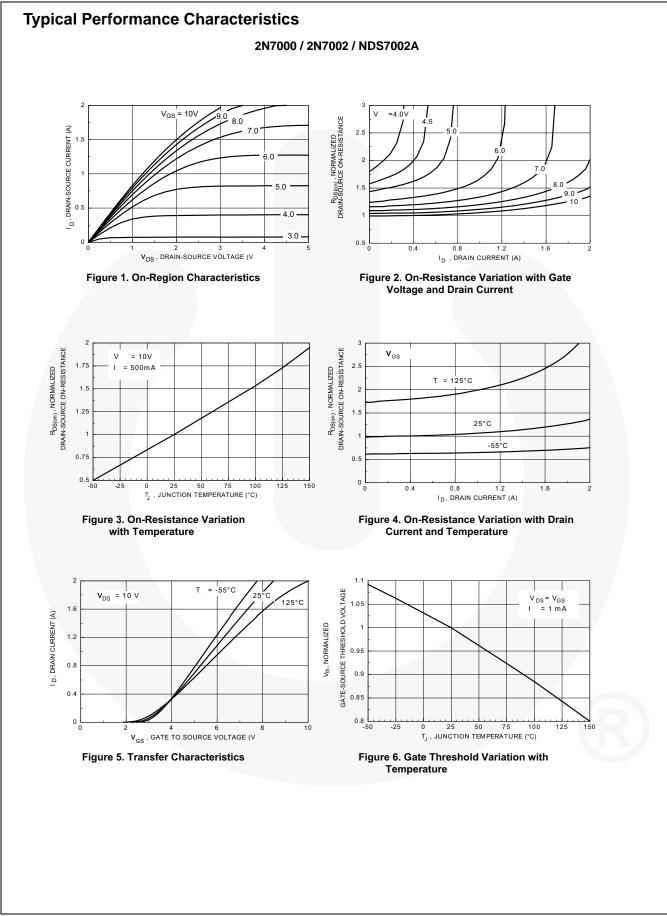
Thermal Characteristics

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

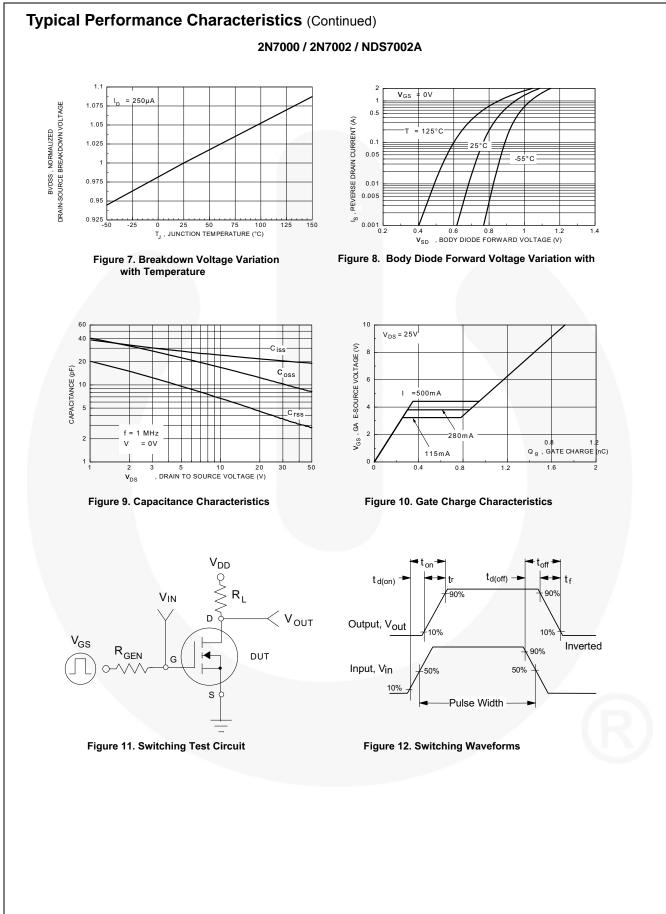
Symbol	Parameter	Value			Unit
Symbol	Faranielei	2N7000	2N7002	NDS7002A	Unit
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	312.5	625	417	°C/W

Electrical Characteristics

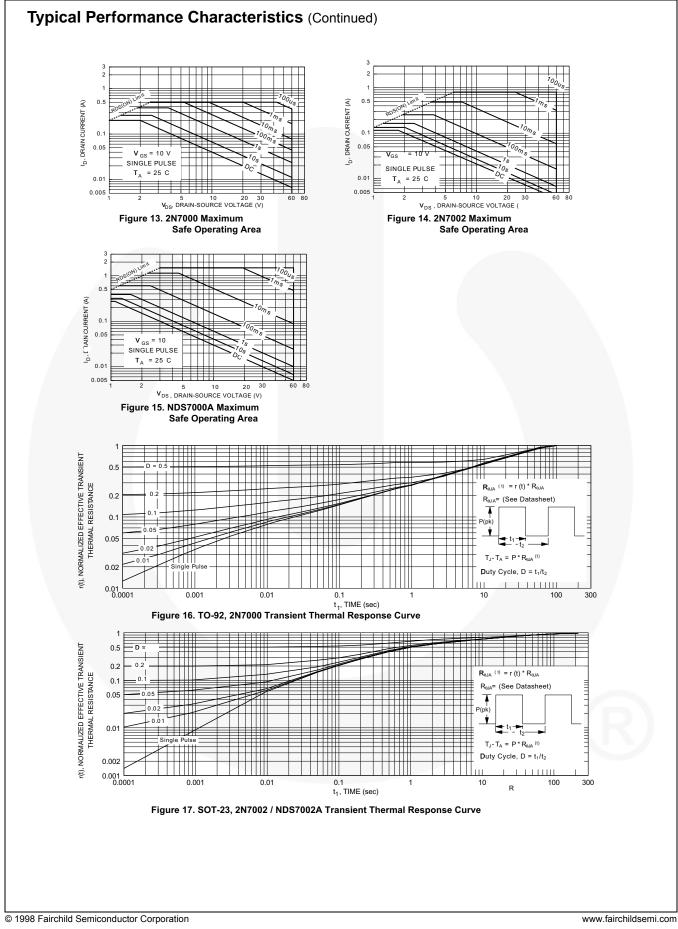
Values are at $T_{\rm C}$ = 25°C unless otherwise noted.

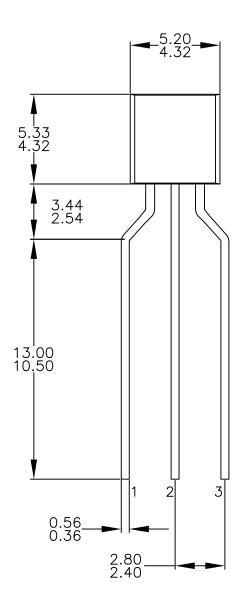

Symbol	Parameter	Conditions	Туре	Min.	Тур.	Max.	Unit
Off Char	acteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 10 μ A	All	60			V
I _{DSS}	Zero Gate Voltage Drain	V _{DS} = 48 V, V _{GS} = 0 V	2N7000			1	μA
	Current	$V_{DS} = 48 V, V_{GS} = 0 V,$ $T_{C} = 125^{\circ}C$				1	mA
		V _{DS} = 60 V, V _{GS} = 0 V	2N7002			1	μA
		V _{DS} = 60 V, V _{GS} = 0 V, T _C = 125°C	NDS7002A			0.5	mA
I _{GSSF}	Gate - Body Leakage, Forward	V _{GS} = 15 V, V _{DS} = 0 V	2N7000			10	nA
		V_{GS} = 20 V, V_{DS} = 0 V	2N7002 NDS7002A			100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	V _{GS} = -15 V, V _{DS} = 0 V	2N7000			-10	nA
		V _{GS} = -20 V, V _{DS} = 0 V	2N7002 NDS7002A			-100	nA

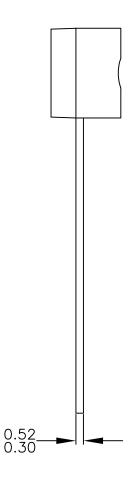
Symbol	Parameter	Conditions	Туре	Min.	Тур.	Max.	Unit
n Char	acteristics		1		1		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2N7000	0.8	2.1	3	V
		V_{DS} = V_{GS} , I_D = 250 μ A	2N7002 NDS7002A	1	2.1	2.5	
00(011)	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 500 mA	2N7000		1.2	5	Ω
		V _{GS} = 10 V, I _D = 500 mA, T _C = 125°C			1.9	9	
		V _{GS} = 4.5 V, I _D = 75 mA			1.8	5.3	
		V _{GS} = 10 V, I _D = 500 mA	2N7002		1.2	7.5	
		V _{GS} = 10 V, I _D = 500 mA, T _C = 100°C			1.7	13.5	
		V _{GS} = 5 V, I _D = 50 mA			1.7	7.5	
		V _{GS} = 5 V, I _D = 50 mA, T _C = 100°C			2.4	13.5	
		V _{GS} = 10 V, I _D = 500 mA	NDS7002A		1.2	2	
		V _{GS} = 10 V, I _D = 500 mA, T _C = 125°C			2	3.5	
		V _{GS} = 5 V, I _D = 50 mA			1.7	3	
		V _{GS} = 5 V, I _D = 50 mA, T _C = 125°C			2.8	5	
/ _{DS(ON)}	Drain-Source On-Voltage	V _{GS} = 10 V, I _D = 500 mA	2N7000		0.6	2.5	V
		V _{GS} = 4.5 V, I _D = 75 mA			0.14	0.4	
		$V_{GS} = 10 V,$ I _D = 500 mA	2N7002		0.6	3.75	
		V _{GS} = 5.0 V, I _D = 50 mA V _{GS} = 10 V,			0.09	1.5	
		$V_{GS} = 10 \text{ V},$ $I_D = 500 \text{ mA}$ $V_{GS} = 5.0 \text{ V},$	NDS7002A		0.6	1	
		I _D = 50 mA			0.09	0.15	
I _{D(ON)}	On-State Drain Current	V _{GS} = 4.5 V, V _{DS} = 10 V	2N7000	75	600		mA
		$\begin{array}{l} V_{GS} = 10 \text{ V}, \\ V_{DS} \geq 2 V_{DS(on)} \end{array}$	2N7002	500	2700		Κ,
			NDS7002A	500	2700		
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 200 mA	2N7000	100	320		mS
		$\begin{array}{l} V_{DS}{\geq}~2V_{DS(ON)},\\ I_{D}=200~\text{mA} \end{array}$	2N7002	80	320		
		V _{DS} ≥ 2V _{DS(ON)} , I _D = 200 mA	NDS7002A	80	320		


Symbol	Parameter	Conditions	Туре	Min.	Тур.	Max.	Unit
Dynamic	Characteristics			•		•	
C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V,	All		20	50	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	All		11	25	
C _{rss}	Reverse Transfer Capacitance		All		4	5	
t _{on}	Turn-On Time		2N7000			10	ns
			2N7002 NDS7002A			20	
t _{off}	t _{off} Turn-Off Time		2N7000			10	ns
		2N7002 NDS7002A			20		
Drain-Sc	ource Diode Characterist	tics and Maximum Rati	ngs				
۱ _S	Maximum Continuous Drain	-Source Diode Forward	2N7002			115	mA
	Current		NDS7002A			280	
I _{SM} Maximum Pulsed Drain-Sou		Irce Diode Forward	2N7002			0.8	А
	Current		NDS7002A			1.5	
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V,$ $I_{S} = 115 \text{ mA}^{(1)}$	2N7002		0.88	1.5	V
		$V_{GS} = 0 V,$ $I_{S} = 400 \text{ mA}^{(1)}$	NDS7002A		0.88	1.2	

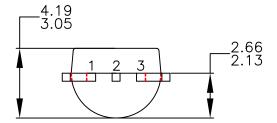
Note:

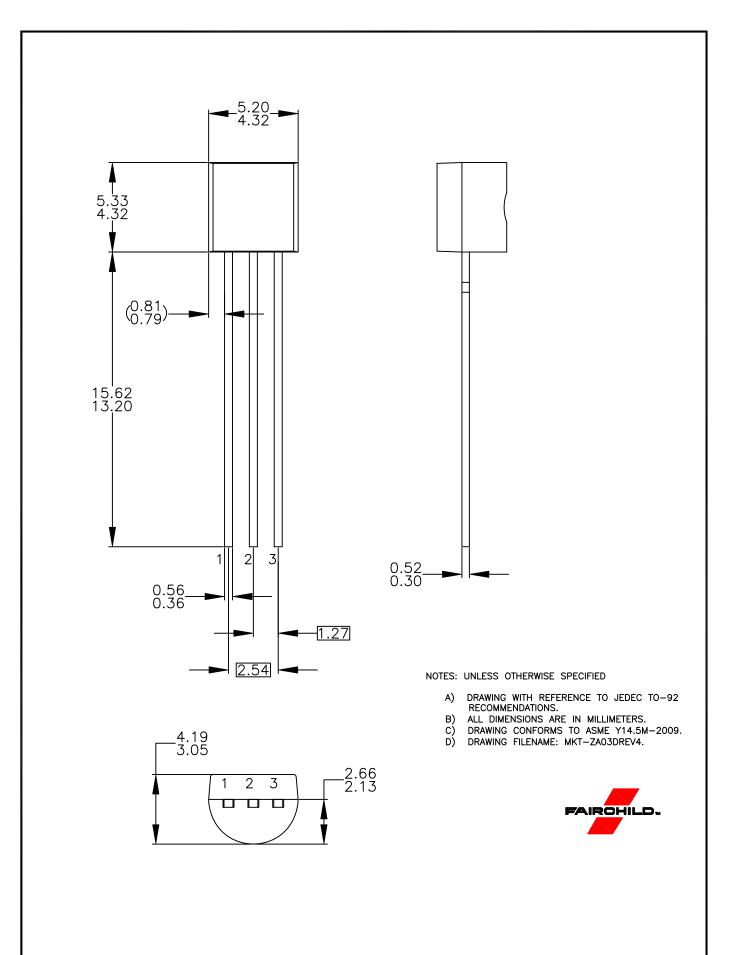

1. Pulse test : Pulse Width \leq 300 µs, Duty Cycel \leq 2 %.

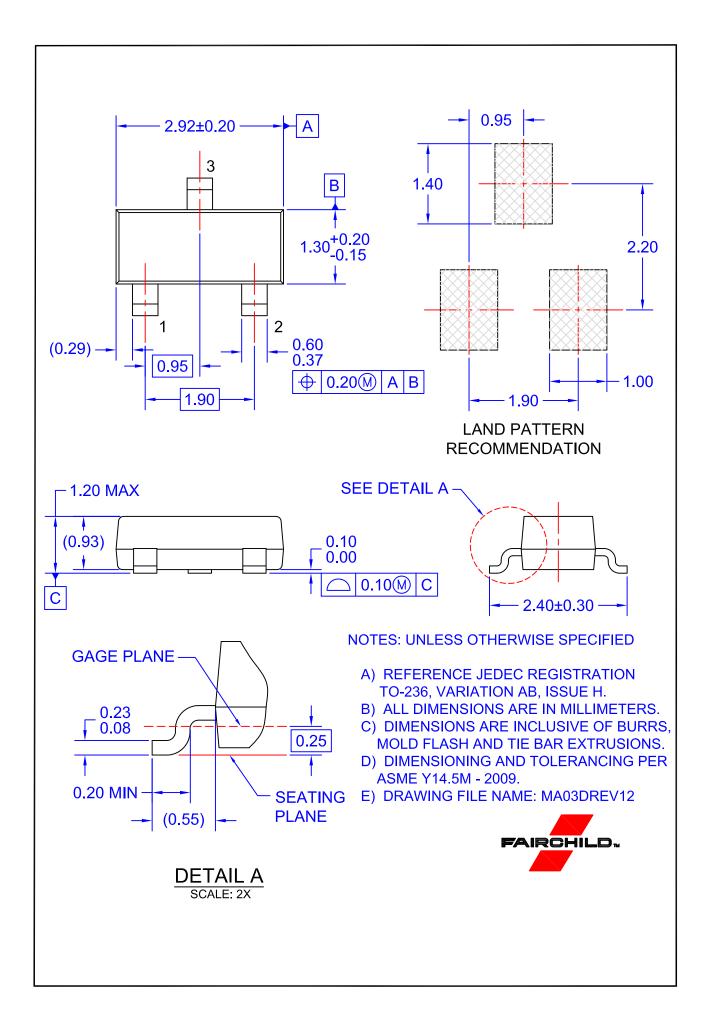


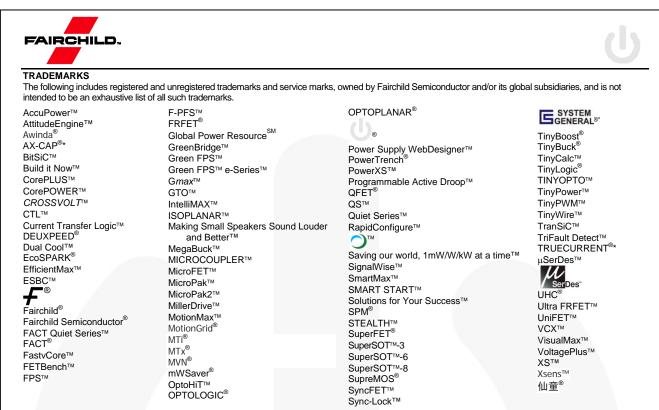

2N7000 / 2N7002 / NDS7002A — N-Channel Enhancement Mode Field Effect Transistor

6






NOTES: UNLESS OTHERWISE SPECIFIED


- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. Α.

- В. С. D. Е.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

2N7002_D87Z 2N7000_D75Z 2N7002 NDS7002A 2N7000 2N7000_D74Z 2N7000_D26Z