

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FAN49100 — 2.5 A, 1.8 MHz, TinyPower™ Buck-Boost Regulator

Features

- 24 µA Typical PFM Quiescent Current
- Above 95% Efficiency
- Total Layout Area = 11.61 mm²
- Input Voltage Range: 2.5 V to 5.5 V
- 1.8 MHz Fixed-Frequency Operation in PWM Mode
- Automatic / Seamless Step-up and Step-down Mode Transitions
- Forced PWM and Automatic PFM/PWM Mode Selection
- 0.5 µA Typical Shutdown Current
- Low Quiescent Current Pass-Through Mode
- Internal Soft-Start and Output Discharge
- Low Ripple and Excellent Transient Response
- Internally Set, Automatic Safety Protections (UVLO, OTP, SCP, OCP)
- Package: 20 Bump, 0.4 mm Pitch WLCSP

Applications

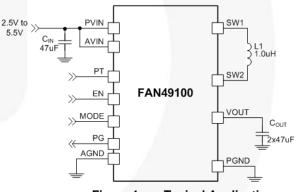
- Smart Phones
- Tablets, Netbooks[®], Ultra-Mobile PCs
- Portable Devices with Li-ion Battery
- 2G/3G/4G Power Amplifiers
- NFC Applications

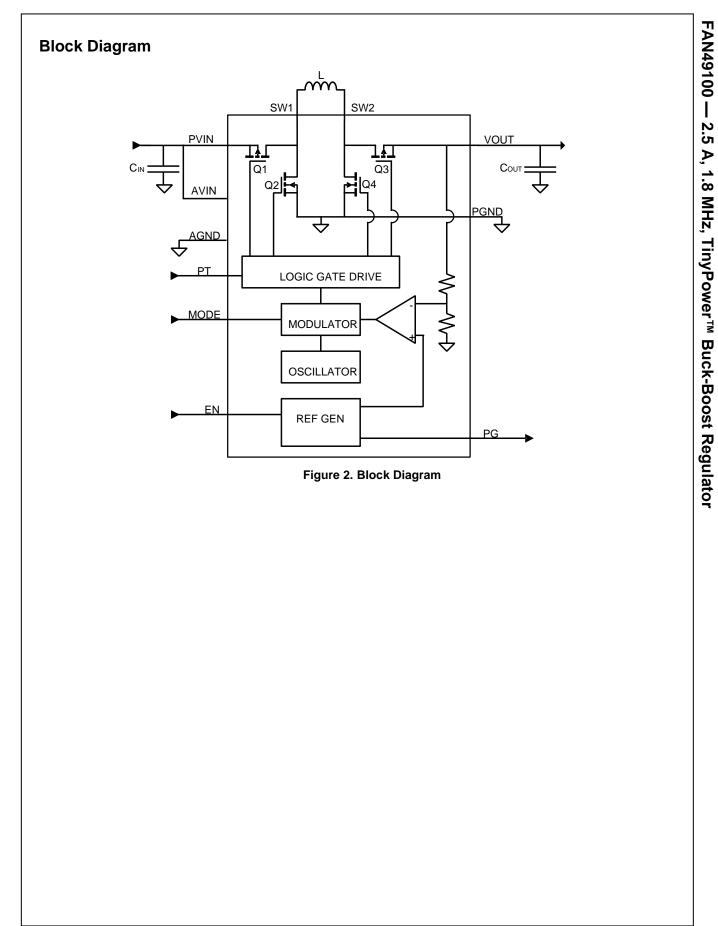
Description

The FAN49100 is a high efficiency buck-boost switching mode regulator which accepts input voltages either above or below the regulated output voltage. Using full-bridge architecture with synchronous rectification, the FAN49100 is capable of delivering up to 2.5 A at 3.6 V input while regulating the output at 3.3 V. The FAN49100 exhibits seamless transition between step-up and step-down modes reducing output disturbances.

At moderate and light loads, Pulse Frequency Modulation (PFM) is used to operate the device in power-save mode to maintain high efficiency. In PFM mode, the part still exhibits excellent transient response during load steps. At moderate to heavier loads or Forced PWM mode, the regulator switches to PWM fixed-frequency control. While in PWM mode, the regulator operates at a nominal fixed frequency of 1.8 MHz, which allows for reduced external component values.

The FAN49100 is available in a 20-bump 1.615 mm x 2.015 mm with 0.4 mm pitch WLCSP.




Figure 1. Typical Application

Ordering Information

Part Number	Output Voltage ⁽¹⁾	Output Discharge	Temperature Range	Package	Packing Method	Device Marking
FAN49100AUC330X	3.3 V	Yes	-40 to 85°C	20-Ball (WLCSP)	Tape and Reel	FD

Note:

1. Additional VOUT values are available, contact Fairchild representative.

Pin Configuration

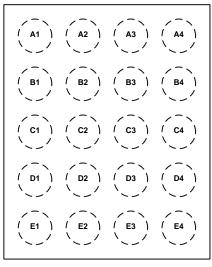


Figure 3. Top View (bump down)

Pin Definitions⁽²⁾

Pin #	Name	Description
A3, A4	PVIN	Power Input Voltage. Connect to input power source. Connect to C_{IN} with minimal path.
A1	AVIN	Analog Input Voltage. Analog input for device. Connect to C _{IN} and PVIN.
A2	EN	Enable. A HIGH logic level on this pin forces the device to be enabled. A LOW logic level forces the device into shutdown. EN pin can be tied to VIN or driven via a GPIO logic voltage.
B3, B4	SW1	Switching Node 1. Connect to inductor L1.
E1	AGND	Analog Ground. Control block signal is referenced to this pin. Short AGND to PGND at GND pad of C_{OUT} .
B1, C1, C2, C3, C4, D1	PGND	Power Ground. Low-side MOSFET of buck and main MOSFET of boost are referenced to this pin. C_{IN} and C_{OUT} should be returned with a minimal path to these pins.
D2	MODE	Forced PWM / AUTO Mode. HIGH logic level on this pin forces the chip to stay in PWM mode, while LOW logic level allows the chip to automatically switch between PFM and PWM modes. Don't leave the pin floating.
D3, D4	SW2	Switching Node 2. Connect to inductor L1.
E2	PG	Power Good. This is an open-drain output and normally High Z. An external pull-up resistor from VOUT can be used to generate a logic HIGH. PG is pulled LOW if output falls out of regulation due to current overload or if thermal protection threshold is exceeded. If EN is LOW, PG is high impedance.
B2	PT	Pass-Through. HIGH logic level forces Pass-Through mode. A LOW logic level forces normal operation. Don't leave the pin floating.
E3, E4	VOUT	Output Voltage. Buck-Boost Output. Connect to output load and COUT.

Note:

2. Refer to Layout Recommendation section located near the end of the datasheet.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter	Min.	Max.	Unit
PVIN/AVIN	PVIN/AVIN Voltage	VIN/AVIN Voltage			V
VOUT	VOUT Voltage		-0.3	6.5	V
SW1, SW2	SW Nodes Voltage		-0.3	7.0	V
	Other Pins		-0.3	6.5	V
	Electrostatic	Human Body Model per JESD22-A114	2000		V
ESD	Discharge Protection Level	Charged Device Model per JESD22-C101	1000		
TJ	Junction Temperature			+150	°C
T _{STG}	Storage Temperature			+150	°C
TL	Lead Soldering Tempe	ead Soldering Temperature, 10 Seconds			°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
PVIN	Supply Voltage Range	2.5		5.5	V
IOUT	T Output Current ⁽³⁾			2.5	А
L	Inductor ⁽⁶⁾		1.0		μH
C _{IN}	Input Capacitance ^(3,4,5,6)	2	47		μF
Соит	Output Capacitance ^(3,4,5,6)	17	47		μF
T _A	Operating Ambient Temperature	-40		+85	°C
TJ	Operating Junction Temperature	-40		+125	°C

Notes:

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with fourlayer 2s2p with vias JEDEC class boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperature T_A .

Symbol	Parameter	Min.	Тур.	Max.	Unit
θ_{JA}	Junction-to-Ambient Thermal Resistance ⁽⁷⁾		66		°C/W

Note:

7. See Thermal Considerations in the Application Information section.

^{3.} Depends on input and output voltages. Thermal properties of the device should be taken into consideration; refer to Thermal Consideration in the Application Information section.

^{4.} Typical value reflects the capacitor value needed to meet minimum requirement. Minimum passive component values indicate effective capacitance which includes temperature, voltage de-rating, tolerance, and stability.

Output capacitance affects load transient response and loop phase margin; see Application Information section.
 Refer to Additional Application Information section.

Electrical Characteristics⁽⁸⁾

Minimum and maximum values are at PVIN = AVIN = 2.5 V to 5.5 V, $T_A = -40^{\circ}$ C to +85°C. Typical values are at $T_A = 25^{\circ}$ C, PVIN = AVIN = V_{EN} = 3.6 V, VOUT = 3.3 V.⁽⁹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Power Su	ipplies				1	
	Quipegent Current	PFM Mode, $I_{OUT} = 0 \text{ mA}^{(10)}$		24		μA
Ι _Q	Quiescent Current	PT Mode, $I_{OUT} = 0 \text{ mA}$		27		μA
I _{SD}	Shutdown Supply Current	EN = GND, PVIN = 3.6 V		0.5	5.0	μA
V _{UVLO}	Under-Voltage Lockout Threshold	Falling PVIN	1.95	2.00	2.05	V
V _{UVHYST}	Under-Voltage Lockout Hysteresis			200		mV
EN, MOD	E, PT					
V _{IH}	HIGH Level Input Voltage		1.1			V
VIL	LOW Level Input Voltage				0.4	V
I _{IN}	Input Bias Current Into Pin	Input Tied to GND or PVIN		0.01	1.00	μA
PG						
V_{PG}	PG LOW	I _{PG} = 5 mA			0.4	V
I _{PG_LK}	PG Leakage Current	$V_{PG} = 5 V$			1	μA
Switching	9					
f _{SW}	Switching Frequency	PVIN = 3.6 V, T _A = 25°C	1.6	1.8	2.0	MHz
I _{p_LIM}	Peak PMOS Current Limit	PVIN = 3.6 V	4.6	5.2	5.9	Α
Accuracy						
		$\label{eq:PVIN} \begin{array}{l} PVIN = 3.6 \ V, \ Forced \ PWM, \\ I_{OUT} = 0 \ mA, \ VOUT = 3.3 \ V \end{array}$	3.267	3.300	3.333	V
Vout_acc	DC Output Voltage Accuracy	$\label{eq:PVIN} \begin{array}{l} PVIN = 3.6 \ V, \ PFM \ Mode, \\ I_{OUT} = 0 \ mA, \ VOUT = 3.3 \ V \end{array}$	3.267	3.375	3.458	- V

Notes:

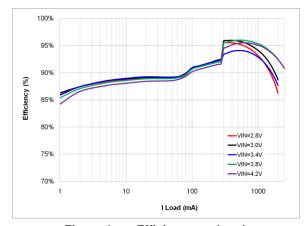
 Refer to Typical Characteristics waveforms/graphs for Closed-Loop data and its variation with input voltage and ambient temperature. Electrical Characteristics reflects Open-Loop steady state data. System Characteristics reflects both steady state and dynamic Close-Loop data associated with the recommended external components.
 Minimum and Maximum limits are verified by design, test, or statistical analysis. Typical (Typ.) values are not

 Minimum and Maximum limits are verified by design, test, or statistical analysis. Typical (Typ.) values are not tested, but represent the parametric norm.

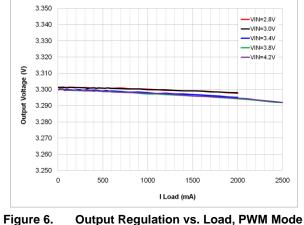
10. Device is not switching.

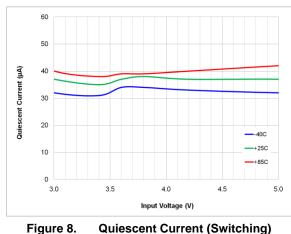
System Characteristics

The following table is verified by design and bench test while using circuit of Figure 1 with the following external components: L = 1.0 μ H, DFE201612E-1R0M (TOKO), C_{IN} = 47 μ F, C_{OUT} = 2 x 47 μ F, 0603 (1608 metric) CL10A476MQ8NZNE (SEMCO). Typical values are at T_A = 25°C, PVIN = AVIN = V_{EN} = 3.6 V, VOUT = 3.3 V. These parameters are not verified in production.


Symbol	Parameter		Min.	Тур.	Max.	Unit	
Vout_acc	Total Accuracy (Includes DC accuracy and load transient) ⁽¹¹⁾			±5		%	
ΔV _{OUT}	Load Regulation	I _{OUT} = 0.4 A to 2.0 A, PVIN = 3.6 V		-0.10		%/A	
ΔV_{OUT}	Line Regulation	$3.0 \text{ V} \le \text{PVIN} \le 4.2 \text{ V}, \text{ I}_{\text{OUT}} = 1.5 \text{ A}$		-0.06		%/V	
		PVIN = 4.2 V, VOUT = 3.3 V, I _{OUT} = 1 A, PWM Mode		4			
$V_{\text{OUT}_\text{RIPPLE}}$	Ripple Voltage	$\label{eq:VIN} \begin{array}{l} PVIN = 3.6 \ V, \ VOUT = 3.3 \ V, \\ I_{OUT} = 100 \ mA, \ PFM \ Mode \end{array}$		22		mV	
		$\label{eq:VIN} \begin{array}{l} PVIN = 3.0 \ V, \ VOUT = 3.3 \ V, \\ I_{OUT} = 1 \ A, \ PWM \ Mode \end{array}$		14			
	Efficiency	PVIN = 3.0 V, VOUT = 3.3 V, I _{OUT} = 75 mA, PFM		90		%	
		PVIN = 3.0 V, VOUT = 3.3 V, I _{OUT} = 500 mA, PWM		96			
η		PVIN = 3.8 V, VOUT = 3.3 V, I _{OUT} = 100 mA, PFM		91			
		PVIN = 3.8 V, VOUT = 3.3 V, I _{OUT} = 600 mA, PWM		96			
		PVIN = 3.4 V, VOUT = 3.3 V, I _{OUT} = 300 mA, PWM		93			
T _{SS}	Soft-Start	EN HIGH to 95% of Target VOUT, $I_{OUT} = 68 \text{ mA}$		260		μs	
ΔV_{OUT_LOAD}		$\begin{array}{l} PVIN=3.4 \; V, \; I_{OUT}=0.5 \; A \Leftrightarrow 1 \; A, \\ T_{R}=T_{F}=1 \; \mu s \end{array}$	$= T_F = 1 µs$ ±43 N = 3.4 V, I _{OUT} = 0.5 A ⇔ A, T _R = T _F = 1 µs, Pulse Width ±125			mV	
	Load Transient	$\begin{array}{l} PVIN=3.4 \; V, \; I_{OUT}=0.5 \; A \Leftrightarrow \\ 2.0 \; A, \; T_{R}=T_{F}=1 \; \mu s, \; Pulse Width \\ =577 \; \mu s \end{array}$					
$\Delta V_{\text{OUT_LINE}}$	Line Transient	$\begin{array}{l} PVIN=3.0 \ V \Leftrightarrow 3.6 \ V, \\ T_{R}=T_{F}=10 \ \mus, \ I_{OUT}=1 \ A \end{array}$		±60		mV	

Note:


11. Load transient is from 0.5 A <-> 1 A.


Typical Characteristics

Unless otherwise noted, PVIN = AVIN = V_{EN} = 3.6 V, VOUT = 3.3 V, L = 1.0 µH, DFE201612E-1R0M (TOKO), C_{IN} = 47 µF, C_{OUT} = 2 x 47 µF, 0603 (1608 metric) CL10A476MQ8NZNE (SEMCO), AUTO Mode.

igure 8. Quiescent Current (Switching) vs. Input Voltage

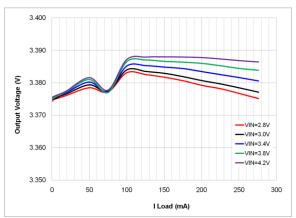


Figure 5. Output Regulation vs. Load

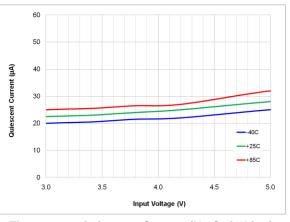


Figure 7. Quiescent Current (No Switching) vs. Input Voltage

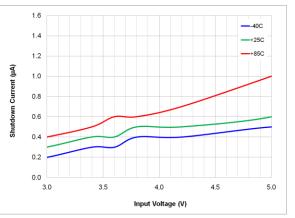


Figure 9. Shutdown Current vs. Input Voltage

Typical Characteristics (Continued)

Unless otherwise noted, PVIN = AVIN = V_{EN} = 3.6 V, VOUT = 3.3 V, L = 1.0 µH, DFE201612E-1R0M (TOKO), C_{IN} = 47 µF, C_{OUT} = 2 x 47 µF, 0603 (1608 metric) CL10A476MQ8NZNE (SEMCO), AUTO Mode.

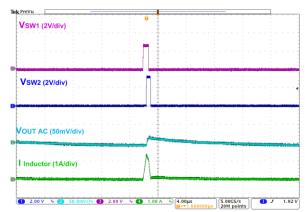


Figure 10. Output Ripple, VIN = 2.8 V, I_{OUT} = 20 mA, Boost Operation



Figure 12. Output Ripple, VIN = 4.2 V, I_{OUT} = 20 mA, Buck Operation

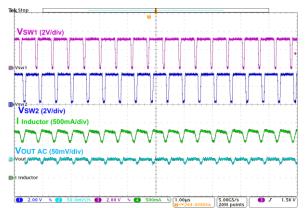


Figure 14. Output Ripple, VIN = 3.3 V, I_{OUT} = 1000 mA, Buck-Boost Operation

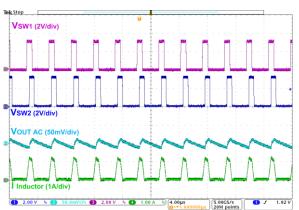


Figure 11. Output Ripple, VIN = 3.3 V, I_{OUT} = 200 mA, Buck-Boost Operation

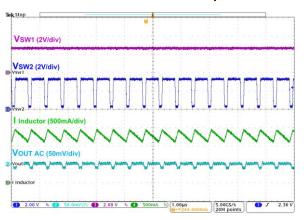
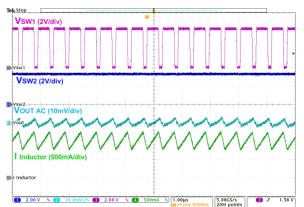
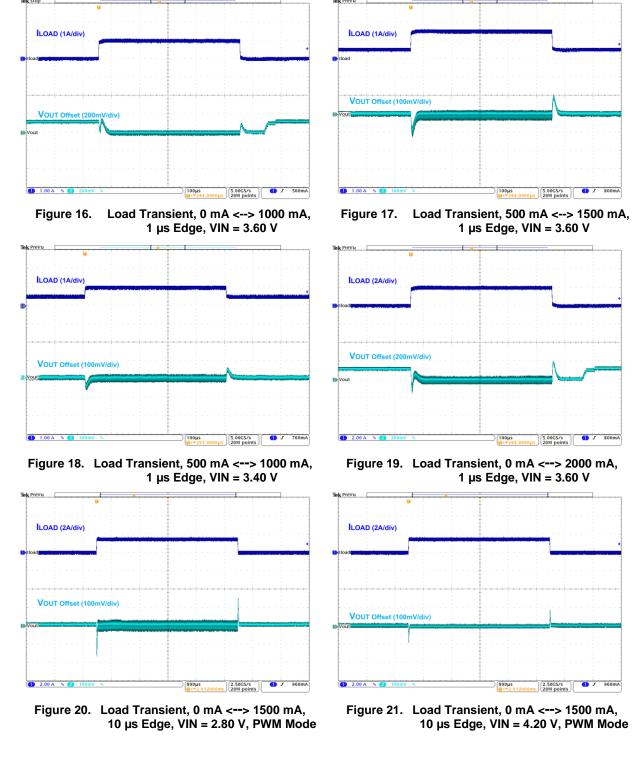
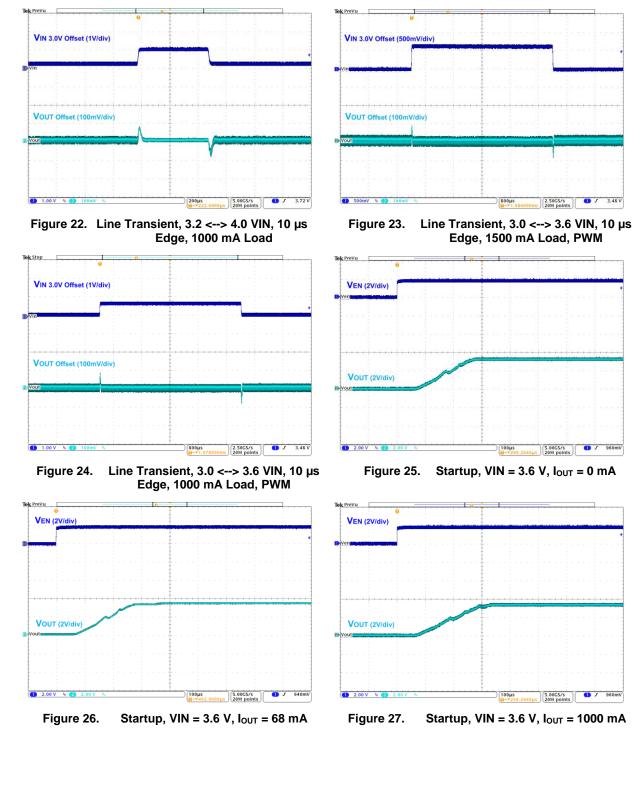


Figure 13. Output Ripple, VIN = 2.5 V, I_{OUT} = 1000 mA, Boost Operation

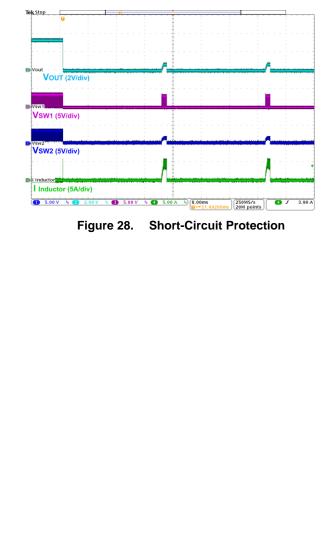




Figure 15. Output Ripple, VIN = 4.5 V, I_{OUT} = 1000 mA, Buck Operation

Typical Characteristics (Continued)Unless otherwise noted, PVIN = AVIN = V_{EN} = 3.6 V, VOUT = 3.3 V, L = 1.0 µH, DFE201612E-1R0M (TOKO), C_{IN} =47 µF, C_{OUT} = 2 x 47 µF, 0603 (1608 metric) CL10A476MQ8NZNE (SEMCO), AUTO Mode.TekstopTekstop0Tekstop

Typical Characteristics (Continued)

Unless otherwise noted, PVIN = AVIN = VEN = 3.6 V, VOUT = 3.3 V, L = 1.0μ H, DFE201612E-1R0M (TOKO), C_{IN} = 47μ F, C_{OUT} = $2 \times 47 \mu$ F, 0603 (1608 metric) CL10A476MQ8NZNE (SEMCO), AUTO Mode.



FAN49100 — 2.5 A, 1.8 MHz, TinyPower™ Buck-Boost Regulator

FAN49100 — 2.5 A, 1.8 MHz, TinyPower™ Buck-Boost Regulator

Typical Characteristics (Continued)

Unless otherwise noted, PVIN = AVIN = VEN = 3.6 V, VOUT = 3.3 V, L = 1.0μ H, DFE201612E-1R0M (TOKO), C_{IN} = 47μ F, C_{OUT} = $2 \times 47 \mu$ F, 0603 (1608 metric) CL10A476MQ8NZNE (SEMCO), AUTO Mode.

Application Information

Functional Description

FAN49100 is a fully integrated synchronous, full bridge DC-DC converter that can operate in buck operation (during high PVIN), boost operation (for low PVIN) and a combination of buck-boost operation when PVIN is close to the target VOUT value. The PWM/PFM controller switches automatically and seamlessly between buck, buck-boost and boost modes.

The FAN49100 uses a four-switch operation during each switching period when in the buck-boost mode. Mode operation is as follows: referring to the power drive stage shown in Figure 29, if PVIN is greater than target VOUT, then the converter is in buck mode: Q3 is ON and Q4 is OFF continuously leaving Q1, Q2 to operate as a current-mode controlled PWM converter. If PVIN is lower than target VOUT then the converter is in boost mode with Q1 ON and Q2 OFF continuously, while leaving Q3, Q4 to operate as a current-mode boost converter. When PVIN is near VOUT, the converter goes into a 3-phase operation in which combines a buck phase, a boost phase and a reset phase; all switches are switching to maintain an average inductor volt-second balance.

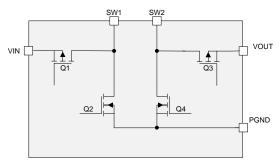


Figure 29. Simplified Block Diagram

PFM/PWM Mode

The FAN49100 uses a current-mode modulator to achieve smooth transitions between PWM and PFM operation. In Pulsed Frequency Modulation (PFM), frequency is reduced to maintain high efficiency. During PFM operation, the converter positions the output voltage typically 75 mV higher than the nominal output voltage during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy load. As the load increased from light loads, the converter enters PWM operation typically at 300 mA of current load. The converter switching frequency is typically 1.8 MHz during PWM operation for moderate to heavy load currents.

PT (Pass-Through) Mode

In Pass-Through mode, all of the switches are not switching and VOUT tracks PVIN (VOUT = PVIN – I_{OUT} *(Q1_{RDSON} + Q3_{RDSON} +L_{DCR}) In PT mode only Over-Temperature (OTP) and Under Voltage Lockout (UVLO) protection circuits are activated. There is no Over-Current Protection (OCP) in PT mode.

Shutdown and Startup

When the EN pin is LOW, the IC is shut down, all internal circuits are off, and the part draws very little current. During shutdown, VOUT is isolated from PVIN. Raising EN pin activates the device and begins the softstart cycle. During soft-start, the modulator's internal reference is ramped slowly to minimize surge currents on the input and prevent overshoot of the output voltage. If VOUT fails to reach target VOUT value after 1 ms, a FAULT condition is declared.

Over-Temperature (OTP)

The regulator shuts down when the die temperature exceeds 150°C. Restart occurs when the IC has cooled by approximately 20°C.

Output Discharge

When the regulator is disabled and driving the EN pin LOW, a 230 Ω internal resistor is activated between VOUT and GND. The Output Discharge is not activated during a FAULT state condition.

Over-Current Protection (OCP)

If the peak current limit is activated for a typical 700 µs, a FAULT state is generated, so that the IC protects itself as well as external components and load.

FAULT State

The regulator enters the FAULT state under any of the following conditions:

- VOUT fails to achieve the voltage required after soft-start.
- Peak current limit triggers.
- OTP or UVLO are triggered.

Once a FAULT is triggered, the regulator stops switching and presents a high-impedance path between PVIN and VOUT. After waiting 30 ms, a restart is attempted.

Power Good

PG, an open-drain output, is LOW during FAULT state and HIGH for Power Good.

The PG pin is provided for signaling the system when the regulator has successfully completed soft-start and no FAULTs have occurred. PG pin also functions as a warning flag for high die temperature and overload conditions.

- PG is released HIGH when the soft-start sequence is successfully completed.
- PG is pulled LOW when a FAULT is declared.

Any FAULT condition causes PG to be de-asserted.

Thermal Considerations

For best performance, the die temperature and the power dissipated should be kept at moderate values.

The maximum power dissipated can be evaluated based on the following relationship:

$$P_{D(\max)} = \left\{ \frac{T_{J(\max)} - T_{A}}{\Theta_{JA}} \right\}$$
(1)

where $T_{J(max)}$ is the maximum allowable junction temperature of the die; T_A is the ambient operating temperature; and θ_{JA} is dependent on the surrounding PCB layout and can be improved by providing a heat sink of surrounding copper ground.

The addition of backside copper with through-holes, stiffeners, and other enhancements can help reduce θ_{JA} . The heat contributed by the dissipation of devices nearby must be included in design considerations. Following the layout recommendation may lower the θ_{JA} .

Additional Application Information

Capacitor	Part Number	Vendor	Value	Case Size	Rating	
C _{IN}	CL10A476MQ8NZNE	SEMCO	47 µF	0603 (1608 Metric)	6.3 V	
Соит	CL10A476MQ8NZNE	SEMCO	2 x 47 µF	0603 (1608 Metric)	6.3 V	

Table 1. Recommended Capacitors

Output Capacitance (COUT) and Input Capacitance (CIN) Stability

The effective capacitance (C_{EFF}) of small, high-value, ceramic capacitors will decrease as bias voltage increases. FAN49100 is guaranteed for stable operation with the minimum value of 17 μ F (C_{EFF(MIN)}) output capacitance when using a 1 μ H value inductor and a minimum value of 13 μ F (C_{EFF(MIN)}) output capacitance when using a 0.47 μ H value inductor. Furthermore, FAN49100 is guaranteed for stable operation with the minimum value of 2 μ F (C_{EFF(MIN)}) input capacitance. De-rating factors should be taken into consideration to ensure selected components meet minimum requirement.

Table 2. Minimum $C_{EFF}^{(12)}$ Required for Stability

VOUT (V)	I _{LOAD} (A)	Inductor Value	
3.3 V	0 – 2.5 A	1.0 µH	17 µF
3.3 V	0 – 2.5 A	0.47 µH	13 µF

Note:

12. C_{EFF} is defined as the capacitance value during operating conditions and not the capacitor value. A capacitor varies with manufacturer, material, case size, voltage rating and temperature.

Inductor Selection

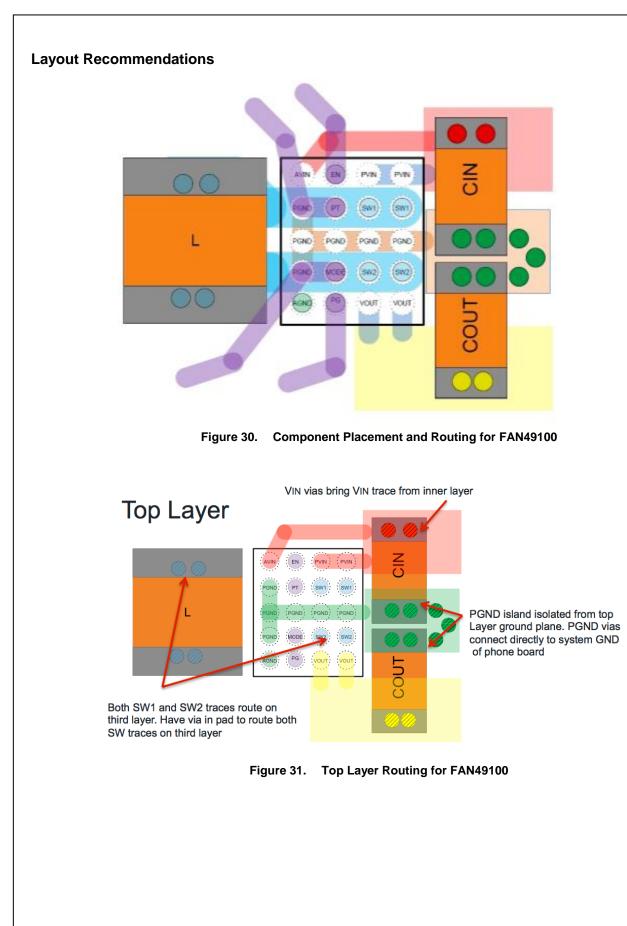
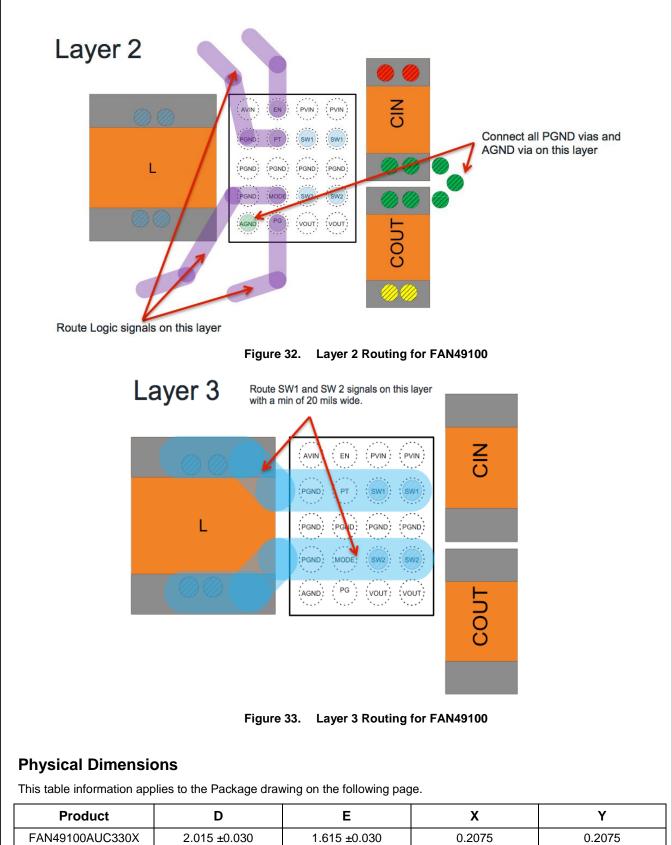
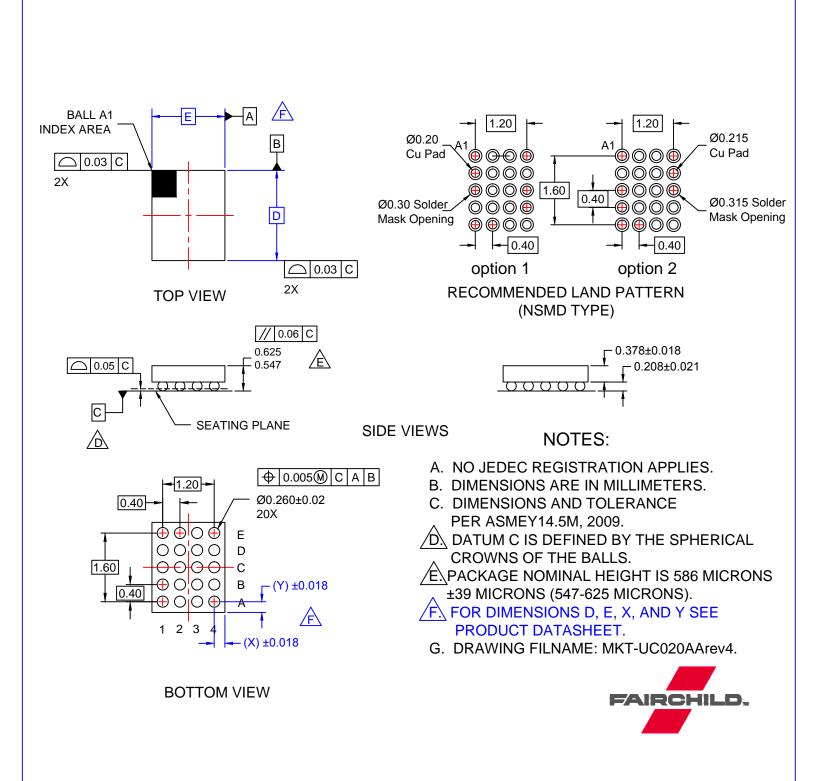
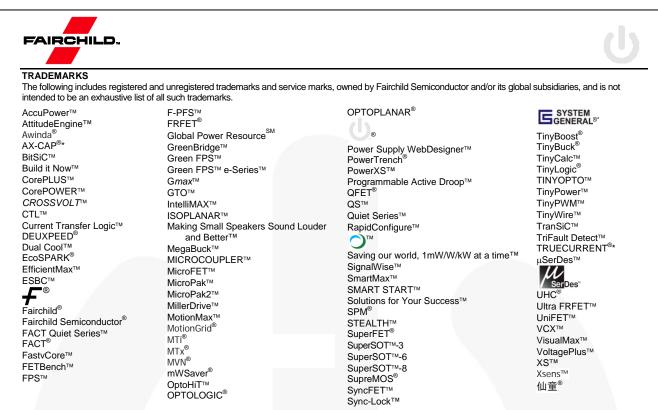

Recommended nominal inductance value is 1.0μ H. An inductor value of 0.47μ H can be used but higher peak currents could lead to lower efficiency; however, transient response performance may be improved. FAN49100 employs peak current limiting and the peak inductor current can reach typically 5.2 A for a short duration during overload conditions. Therefore, current saturation value should be taken into consideration when choosing an inductor.

Table 3. Recommended Inductors


Part Number	Vendor	Value	Dimension	Isat	DCR
DFE201610E1R0M		1.0 µH	2.0 mm x 1.6 mm x 1.0 mm	3.9 A	48 mΩ
DFE201612E1R0M	токо		2.0 mm x 1.6 mm x 1.2 mm	4.4 A	40 mΩ
DFE201610ER47M	ТОКО	0.47 µH ⁽¹³⁾	2.0 mm x 1.6 mm x 1.0 mm	5.3 A	26 mΩ
DFE201612ER47M		(Optional)	2.0 mm x 1.6 mm x 1.2 mm	6.1 A	20 mΩ


Note:


13. When using 0.47 μH inductor value, one 47 μF (CL10A476MQ8NZNE) capacitor can be used at the output of the regulator.

15

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification Product Status		Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FAN49100AUC330X