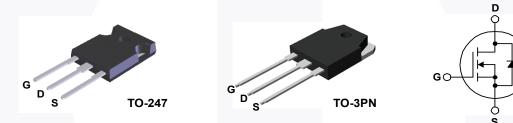


FDH50N50 / FDA50N50 N-Channel UniFETTM MOSFET 500 V, 48 A, 105 mΩ

Features

- + $R_{DS(on)}$ = 89 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 24 A
- Low Gate Charge (Typ. 105 nC)
- Low C_{rss} (Typ. 45 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability


Applications

- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

May 2014

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FDH50N50_F133 / FDA50N50	Unit	
V _{DSS}	Drain-Source Voltage		500	V	
I _D	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		48 30.8	A A
I _{DM}	Drain Current	- Pulsed (I	Note 1)	192	А
V _{GSS}	Gate-Source voltage			±20	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1868	mJ	
I _{AR}	Avalanche Current (Not		Note 1)	48	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		62.5	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		20	V/ns	
P _D	Power Dissipation	(T _C = 25°C) - Derate Above 25°C		625 5	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	FDH50N50_F133 / FDA50N50	Unit	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	0.2	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	40	°C/W	

DH50N50 /
FDA50N5
0 — N-Channel UniFET
T
MOSFET

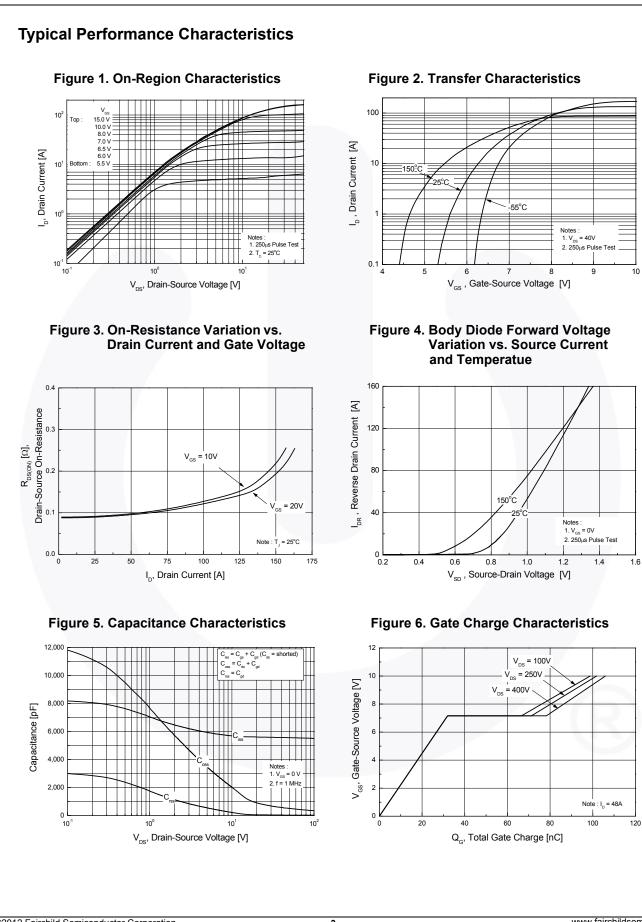
Π

Package Marking and Ordering Information

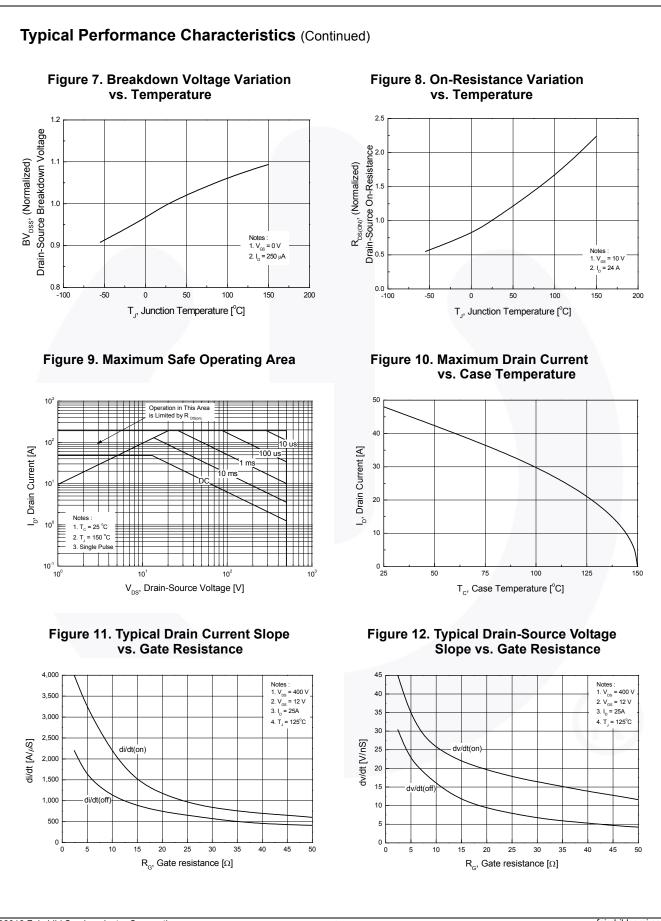
Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDH50N50_F133	FDH50N50	TO-247	Tube	N/A	N/A	30 units
FDA50N50	FDA50N50	TO-3PN	Tube	N/A	N/A	30 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions		Тур.	Max.	Unit
Off Charac	teristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	500			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		0.5		V/∘C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 500 V, V_{GS} = 0 V$ $V_{DS} = 400 V, T_{C} = 125^{\circ}C$			25 250	μA μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 24 A		0.089	0.105	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 48 A		20		S
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		4979	6460	pF
C _{oss}	Output Capacitance			760	1000	pF
C _{rss}	Reverse Transfer Capacitance			50	65	pF
C _{oss}	Output Capacitance	V_{DS} = 400 V, V_{GS} = 0 V, f = 1 MHz		161		pF
Coss(eff.)	Effective Output Capacitance	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		342		pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250 V, I _D = 48 A,		105	220	ns
t _r	Turn-On Rise Time	V_{GS} = 10 V, R_{G} = 25 Ω		360	730	ns
t _{d(off)}	Turn-Off Delay Time			225	460	ns
t _f	Turn-Off Fall Time	(Note 4)		230	470	ns
Qg	Total Gate Charge	V _{DS} = 400 V, I _D = 48 A		105	137	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		33		nC
Q _{gd}	Gate-Drain Charge	(Note 4)		45		nC
Drain-Sou	rce Diode Characteristics and Maximur	m Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				48	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				192	А
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 48 A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 48 A,		580		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt =100 A/μs		10		μC

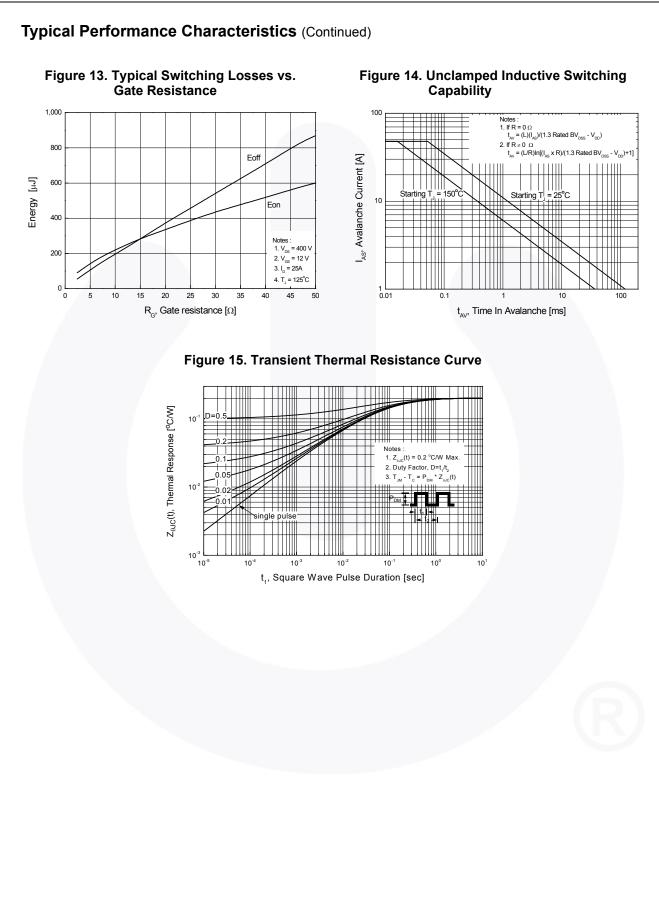

Notes:

1. Repetitive rating: pulse-width limited by maximum junction temperature.

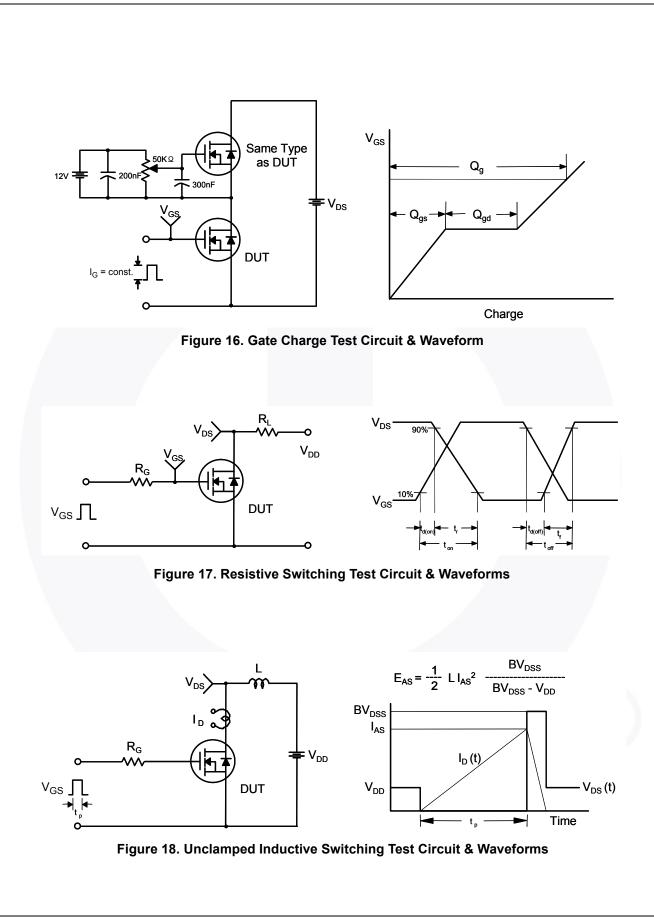

2. L = 1.46 mH, I_{AS} = 48 A, V_{DD} = 50 V, R_G = 25 $\Omega,$ starting T_J = 25°C.

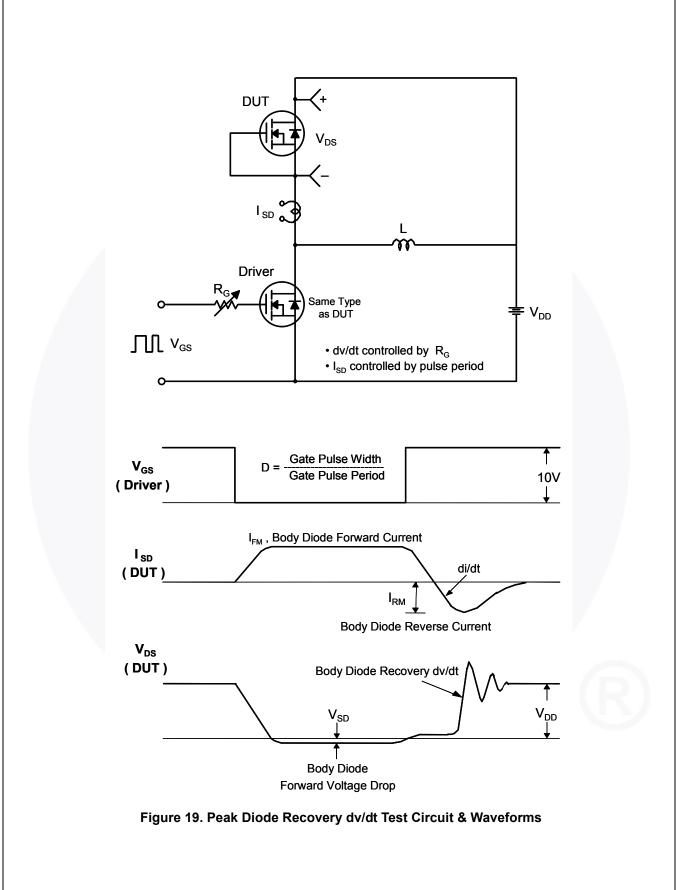
3. I_{SD} \leq 48 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.

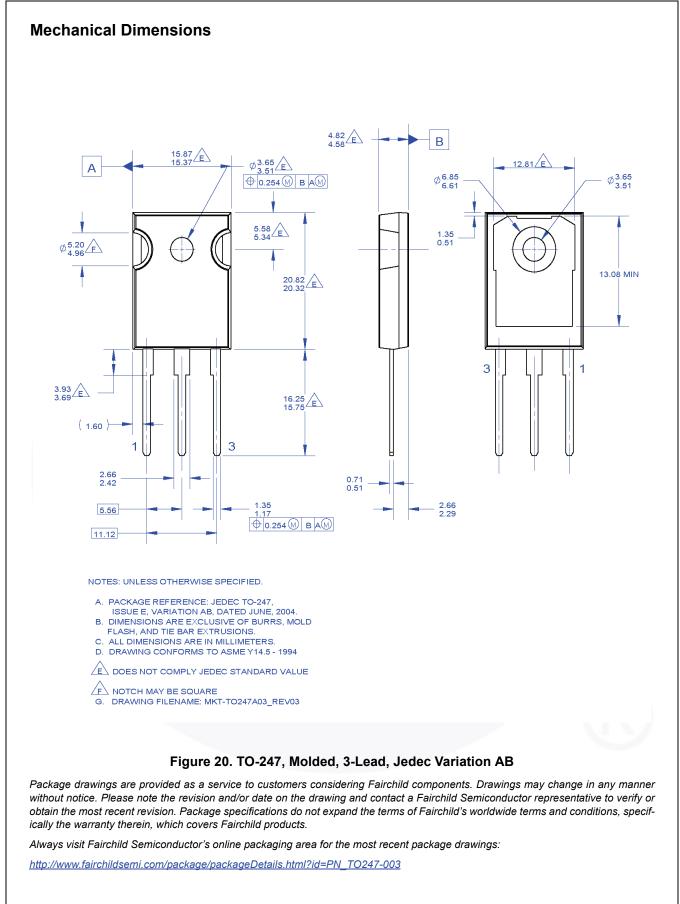
4. Essentially independent of operating temperature typical characteristics.

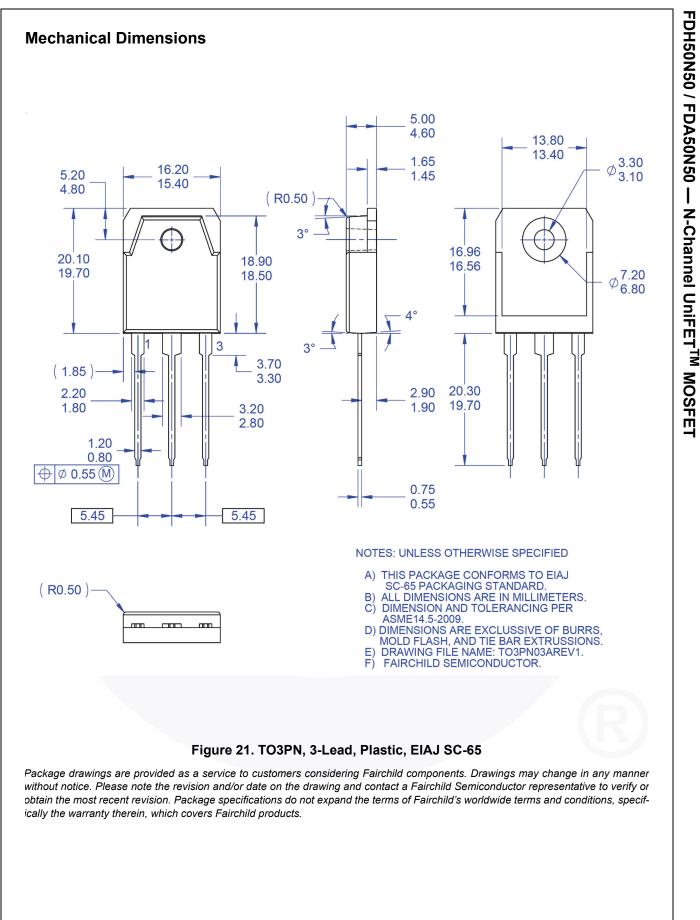


©2012 Fairchild Semiconductor Corporation FDH50N50 / FDA50N50 Rev. C2




©2012 Fairchild Semiconductor Corporation FDH50N50 / FDA50N50 Rev. C2


www.fairchildsemi.com



5

FDH50N50 / FDA50N50 ---

Semiconductor. The datasheet is for reference information only.

Rev. 168

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDA50N50</u>