


## MOSFET Maximum Ratings T<sub>J</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                 |                       | Ratings      | Units             |  |
|-----------------------------------|-----------------------------------------------------------|-----------------------|--------------|-------------------|--|
| V <sub>DSS</sub>                  | Drain-to-Source Voltage                                   |                       | 40           | V                 |  |
| V <sub>GS</sub>                   | Gate-to-Source Voltage                                    |                       | ±20          | V                 |  |
| I <sub>D</sub>                    | Drain Current - Continuous (V <sub>GS</sub> =10) (Note 1) | T <sub>C</sub> =25°C  | 110          | ٨                 |  |
|                                   | Pulsed Drain Current                                      | T <sub>C</sub> = 25°C | See Figure 4 | — A               |  |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                             | (Note 2)              | 174          | mJ                |  |
| -                                 | Power Dissipation                                         |                       | 176          | W                 |  |
| P <sub>D</sub>                    | Derate above 25°C                                         |                       | 1.18         | W/ <sup>o</sup> C |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature                         |                       | -55 to + 175 | °C                |  |
| $R_{\theta JC}$                   | Thermal Resistance, Junction to Case                      |                       | 0.85         | °C/W              |  |
| $R_{\theta JA}$                   | Maximum Thermal Resistance, Junction to Ambient           | (Note 3)              | 43           | °C/W              |  |

### Package Marking and Ordering Information

| Device Marking | Device       | Package  | Reel Size | Tape Width | Quantity |
|----------------|--------------|----------|-----------|------------|----------|
| FDI9406        | FDI9406_F085 | TO-262AB | Tube      | N/A        | 50 units |

#### Notes:

1: Current is limited by bondwire configuration.

2: Starting T<sub>J</sub> = 25°C, L = 0.045mH, I<sub>AS</sub> = 88A, V<sub>DD</sub> = 40V during inductor charging and V<sub>DD</sub> = 0V during time in avalanche. 3:  $R_{\theta JA}$  is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder <sup>400</sup> mounting surface of the drain pins.  $R_{\theta JC}$  is guaranteed by design while  $R_{\theta JA}$  is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in<sup>2</sup> pad of 2oz copper.

| Symbol                               | Parameter                         | Test Conditions                        |                                               | Min. | Тур. | Max. | Units |
|--------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------|------|------|------|-------|
| Off Cha                              | racteristics                      |                                        |                                               |      |      |      |       |
| B <sub>VDSS</sub>                    | Drain-to-Source Breakdown Voltage | I <sub>D</sub> = 250μA, V <sub>G</sub> | <sub>S</sub> = 0V                             | 40   | -    | -    | V     |
|                                      | Drain-to-Source Leakage Current   | V <sub>DS</sub> =40V,                  | T <sub>J</sub> = 25 <sup>o</sup> C            | -    | -    | 1    | μA    |
| DSS                                  |                                   | V <sub>GS</sub> = 0V                   | $T_J = 175^{\circ}C(Note 4)$                  | -    | -    | 1    | mA    |
| I <sub>GSS</sub>                     | Gate-to-Source Leakage Current    | $V_{GS} = \pm 20V$                     |                                               | -    | -    | ±100 | nA    |
| R <sub>DS(on)</sub>                  | Drain-to-Source On Resistance     | I <sub>D</sub> = 80A,                  |                                               | -    | 1.73 | 2.2  | mΩ    |
| V <sub>GS(th)</sub>                  | Gate-to-Source Threshold Voltage  | $V_{GS} = V_{DS}, I_D =$               | = 250μA                                       | 2.0  | 2.83 | 4.0  | V     |
| R <sub>DS(on)</sub>                  | Drain-to-Source On Resistance     |                                        | $T_{1} = 175^{\circ}C(Note 4)$                | -    | 2.86 | 3.2  | mΩ    |
| <b>Dynami</b><br>C <sub>iss</sub>    | c Characteristics                 |                                        |                                               |      | 7710 | -    | pF    |
| C <sub>iss</sub><br>C <sub>oss</sub> | Output Capacitance                | V <sub>DS</sub> = 25V, V <sub>GS</sub> | <sub>S</sub> = 0V,                            |      | 2015 | -    | pF    |
| C <sub>rss</sub>                     | Reverse Transfer Capacitance      | f = 1MHz                               |                                               | _    | 140  | -    | pF    |
| R <sub>g</sub>                       | Gate Resistance                   |                                        |                                               | -    | 2.7  | -    | Ω     |
| Q <sub>g(ToT)</sub>                  | Total Gate Charge at 10V          | $V_{GS} = 0$ to 10V                    | 1/ - 321/                                     | -    | 107  | 138  | nC    |
| Q <sub>g(th)</sub>                   | Threshold Gate Charge             | $V_{GS} = 0$ to 2V                     | V <sub>DD</sub> = 32V<br>I <sub>D</sub> = 80A | -    | 14   | 19   | nC    |
| Q <sub>gs</sub>                      | Gate-to-Source Gate Charge        |                                        |                                               | -    | 33   | -    | nC    |
| 90                                   | l l                               |                                        |                                               |      |      |      |       |

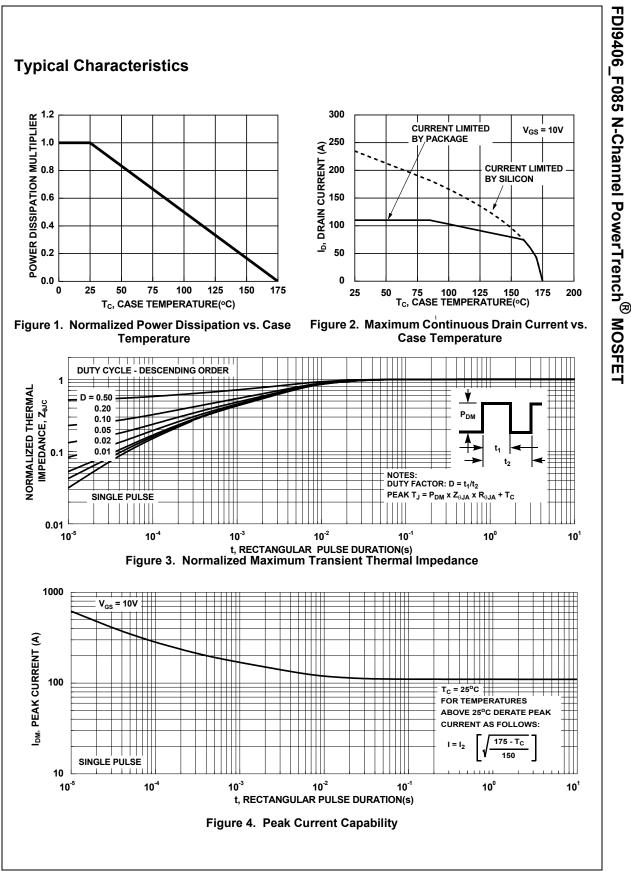
## **Switching Characteristics**

Gate-to-Drain "Miller" Charge

| t <sub>on</sub>     | Turn-On Time   |                                                                                       | - | -  | 160 | ns |
|---------------------|----------------|---------------------------------------------------------------------------------------|---|----|-----|----|
| t <sub>d(on)</sub>  | Turn-On Delay  |                                                                                       | - | 32 | -   | ns |
| t <sub>r</sub>      | Rise Time      | V <sub>DD</sub> = 20V, I <sub>D</sub> = 80A,                                          | - | 81 | -   | ns |
| t <sub>d(off)</sub> | Turn-Off Delay | $V_{DD}$ = 20V, I <sub>D</sub> = 80A,<br>V <sub>GS</sub> = 10V, R <sub>GEN</sub> = 6Ω | - | 50 | -   | ns |
| t <sub>f</sub>      | Fall Time      |                                                                                       | - | 23 | -   | ns |
| t <sub>off</sub>    | Turn-Off Time  |                                                                                       | - | -  | 93  | ns |

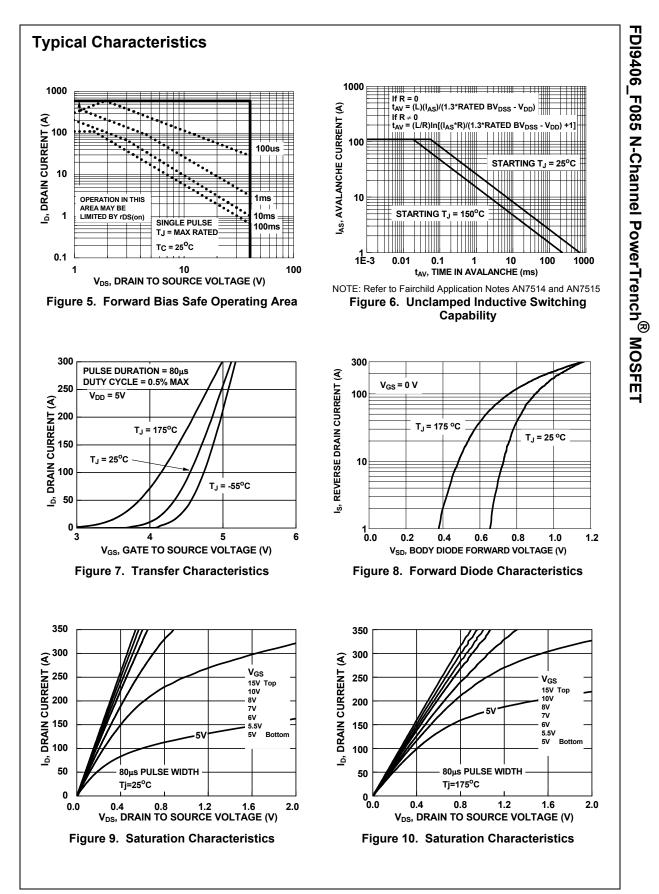
## **Drain-Source Diode Characteristics**

| $V_{SD}$        | Source-to-Drain Diode Voltage | I <sub>SD</sub> = 80A, V <sub>GS</sub> = 0V           | - | -   | 1.25 | V  |
|-----------------|-------------------------------|-------------------------------------------------------|---|-----|------|----|
| t <sub>rr</sub> | Reverse-Recovery Time         | I <sub>F</sub> = 80A, dI <sub>SD</sub> /dt = 100A/μs, | - | 85  | 110  | ns |
| Q <sub>rr</sub> | Reverse-Recovery Charge       | V <sub>DD</sub> =32V                                  | - | 122 | 160  | nC |

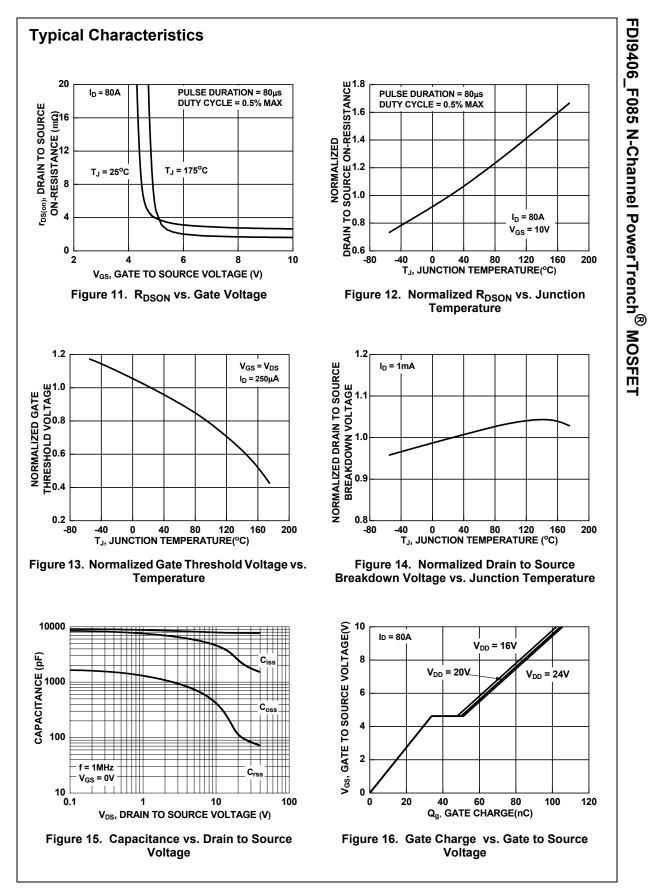

Note:

Q<sub>gd</sub>

4: The maximum value is specified by design at  $T_J$  = 175°C. Product is not tested to this condition in production.


18

nC




FDI9406\_F085 Rev. C3

www.fairchildsemi.com



FDI9406\_F085 Rev. C3





Obsolete

Not In Production

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDI9406\_F085</u>