General Description

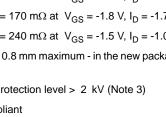
This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

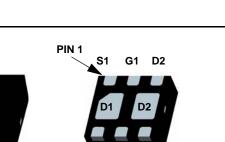
The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

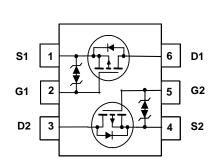
MicroFET 2x2

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-30	V	
V _{GS}	Gate to Source Voltage		±8	V	
	Drain Current -Continuous	(Note 1a)	-2.9	٨	
D	-Pulsed		-6	A	
P _D	Power Dissipation	(Note 1a)	1.4	14/	
	Power Dissipation	(Note 1b)	0.7	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	


Thermal Characteristics


R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1a)	86	
$R_{ ext{ heta}JA}$	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1c)	69	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1d)	151	

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
323	FDMA3023PZ	MicroFET 2X2	7 "	8 mm	3000 units

D1 G2 S2

FAIRCHILD

FDMA3023PZ

Dual P-Channel PowerTrench[®] MOSFET

-30 V, -2.9 A, 90 mΩ

Features

- Max $r_{DS(on)}$ = 90 m Ω at V_{GS} = -4.5 V, I_D = -2.9 A
- Max $r_{DS(on)}$ = 130 m Ω at V_{GS} = -2.5 V, I_D = -2.6 A
- Max $r_{DS(on)}$ = 170 m Ω at V_{GS} = -1.8 V, I_D = -1.7 A
- Max r_{DS(on)} = 240 mΩ at V_{GS} = -1.5 V, I_D = -1.0 A

Free from halogenated compounds and antimony

- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2 kV (Note 3)
- RoHS Compliant

oxides

FDMA3023PZ Dual
Dual
P-Channel
PowerTrench [®]
MOSFET

BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = -250 $\mu A,$ referenced to 25 °C		-24		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA	
On Char	acteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.6	-1.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		3		mV/°C	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$		71	90		
	Static Drain to Source On Resistance	V_{GS} = -2.5 V, I_{D} = -2.6 A		97	130		
r _{DS(on)}		V_{GS} = -1.8 V, I_{D} = -1.7 A		122	170	mΩ	
		$V_{GS} = -1.5 \text{ V}, I_D = -1.0 \text{ A}$		151	240]	
		V_{GS} = -4.5 V, I _D = -2.9 A, T _J = 125 °C		110	140		
9fs	Forward Transconductance	$V_{GS} = -4.5 \text{ V}, \text{ I}_D = -2.9 \text{ A}, \text{ T}_J = 125 \text{ °C}$ $V_{DS} = -5 \text{ V}, \text{ I}_D = -2.9 \text{ A}$		110 10	140	S	
Dynamic	Forward Transconductance			-	140	S	
Dynamic		V _{DS} = -5 V, I _D = -2.9 A		-	140 530	S pF	
Dynamic C _{iss} C _{oss}	c Characteristics	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10			
Dynamic C _{iss}	Characteristics	V _{DS} = -5 V, I _D = -2.9 A		10 400	530	pF	
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance Output Capacitance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10 400 55	530 70	pF pF	
Dynamic C _{iss} C _{oss} C _{rss} Switchin	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10 400 55	530 70	pF pF	
Dynamic C _{iss} C _{oss} C _{rss}	C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Otheracteristics	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		10 400 55 45	530 70 65	pF pF pF	
Dynamic C _{iss} C _{oss} C _{rss} Switchin	C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Otharacteristics Turn-On Delay Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ - $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ - f = 1 MHz		10 400 55 45 5	530 70 65 10	pF pF pF ns	
Dynamic C_{iss} C_{oss} C_{rss} Switchin $t_{d(on)}$ t_r $t_{d(off)}$	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Otharacteristics Turn-On Delay Time Rise Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$		10 400 55 45 5 4 4	530 70 65 10 10	pF pF pF ns	
Dynamic C_{iss} C_{oss} C_{rss} Switchin $t_{d(on)}$ t_r $t_{d(off)}$ t_f	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance G Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		10 400 55 45 5 4 62	530 70 65 10 10 100	pF pF pF ns ns	
Dynamic C_{iss} C_{oss} C_{rss} Switchin $t_{d(on)}$ t_r	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance G Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$ $V_{DS} = -15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$		10 400 55 45 5 4 62 18	530 70 65 10 10 100 33	pF pF pF ns ns ns	

Test Conditions

Min

Тур

Max

Units

Drain-Source Diode Characteristics

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Parameter

Symbol

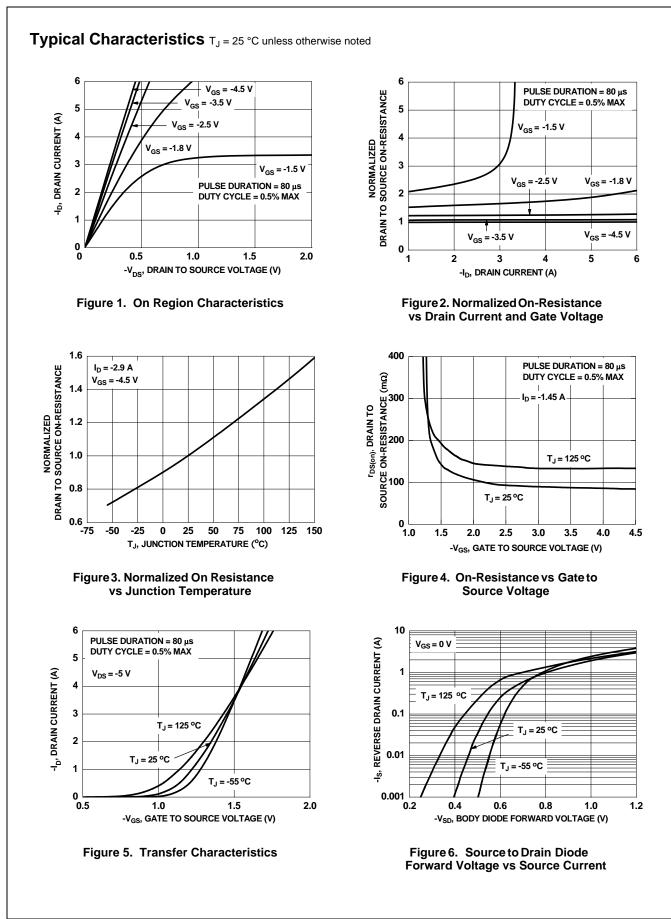
Off Characteristics

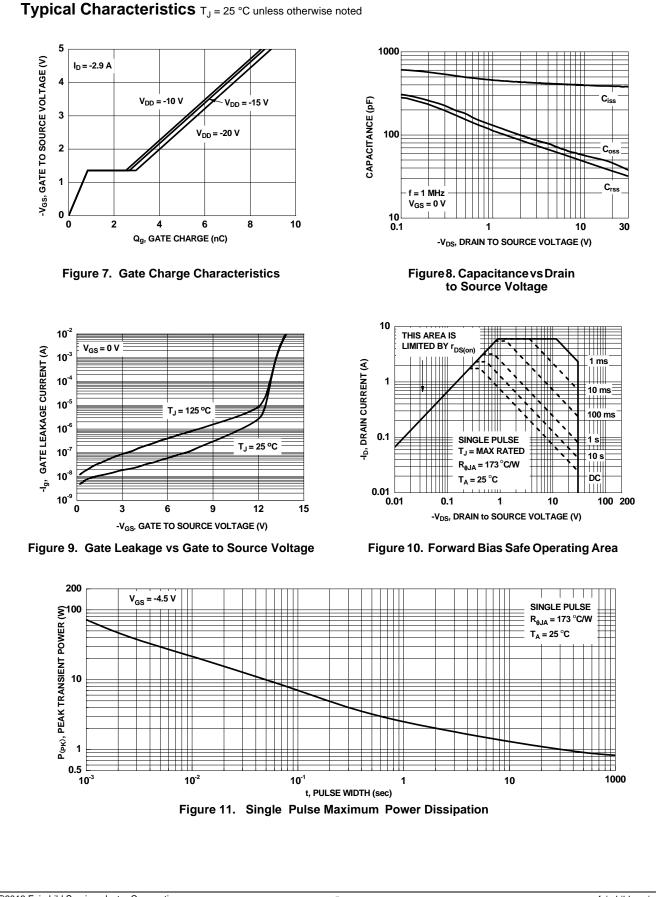
I _S	Maximum Continuous Drain-Source Diode Forward Current				-1.1	А
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.1 A$ (Note 2)		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -2.9 A, di/dt = 100 A/μs		18	33	ns
Q _{rr}	Reverse Recovery Charge	$-1F = -2.3 \text{ A}, \text{ u/ut} = 100 \text{ A/}\mu\text{s}$		6.6	13	nC

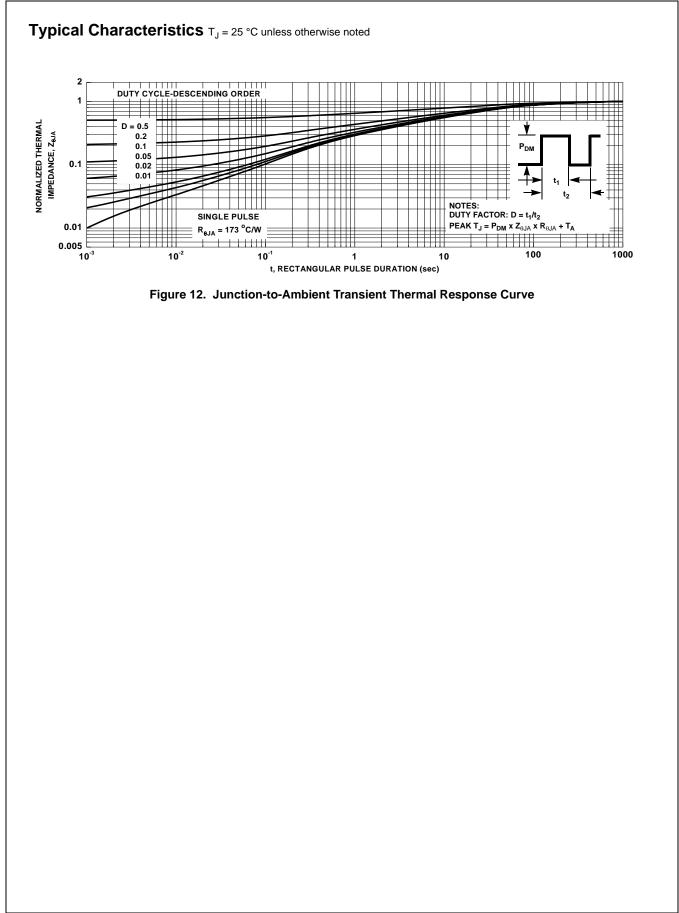
2

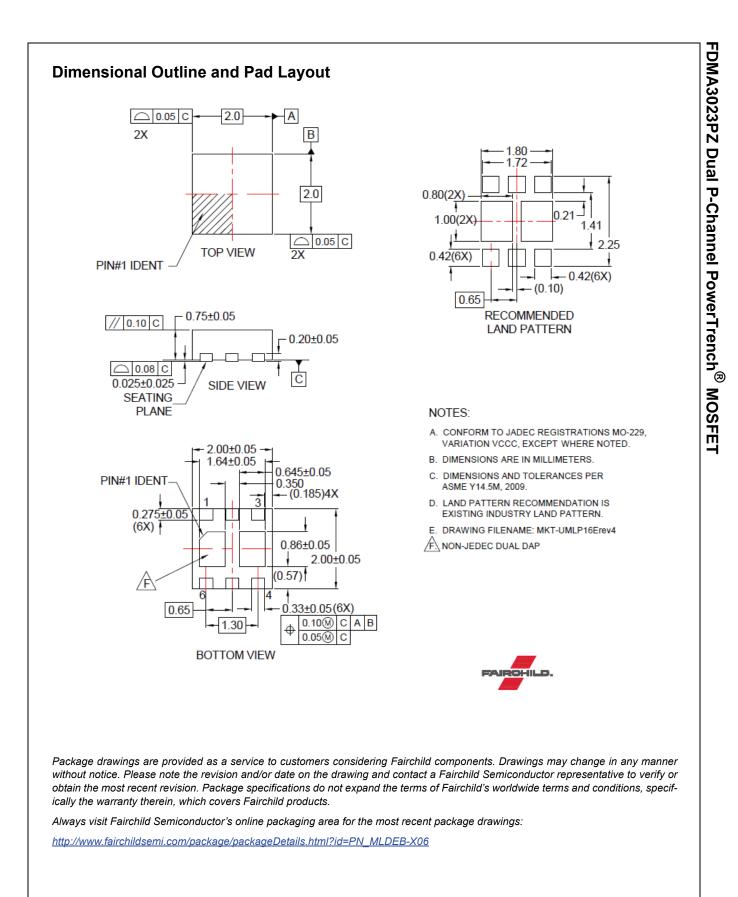
FDMA3023PZ Dual P-Channel PowerTrench[®] MOSFET

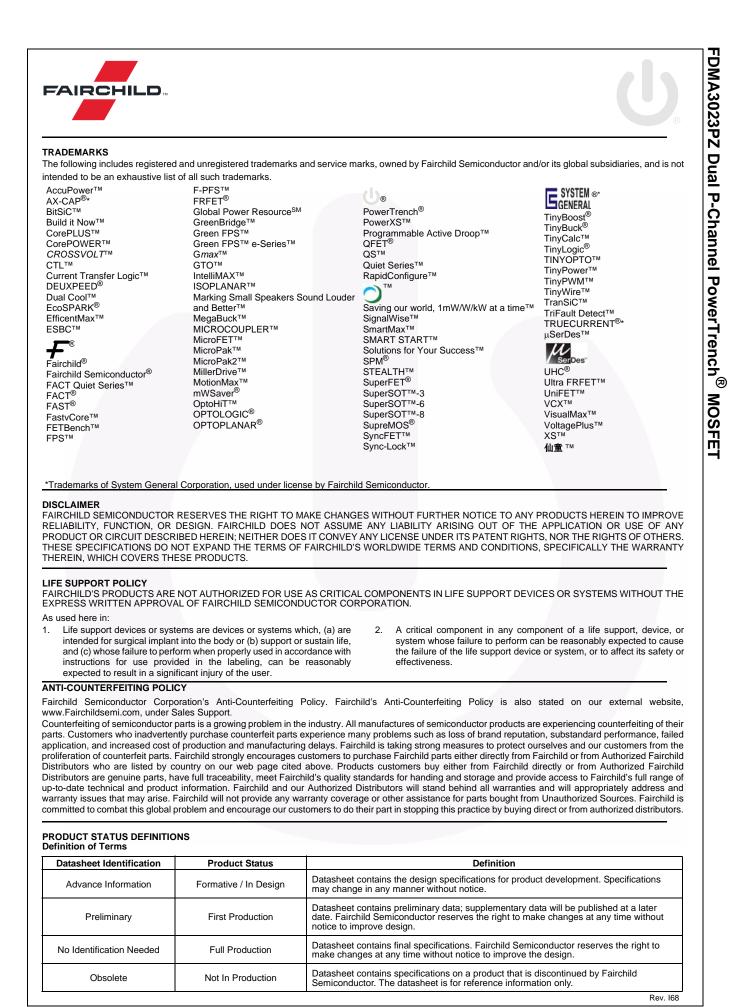
Notes:


R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
 (a) R_{0JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.


- (a) R_{0JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single opera
 (b) R_{0JA} = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
- (c) $R_{BJA} = 69 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
- (d) $R_{\theta JA} = 151 \text{ °C/W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.




2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: