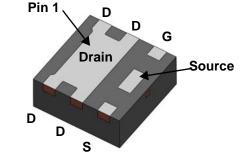


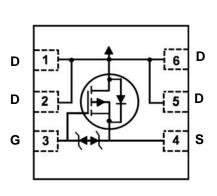
February 2015

FDMA6676PZ Single P-Channel PowerTrench[®] MOSFET

-30 V, -11 A, 13.5 mΩ


Features

- Max r_{DS(on)} = 13.5 mΩ @ V_{GS} = -10 V
- 25V V_{GS} Extended Operating Rating
- 30V V_{DS} Blocking
- 2x2mm Form Factor
- Low Profile 0.8 mm maximum
- Integrated Protection Diode
- RoHS Compliant
- Halogen Free



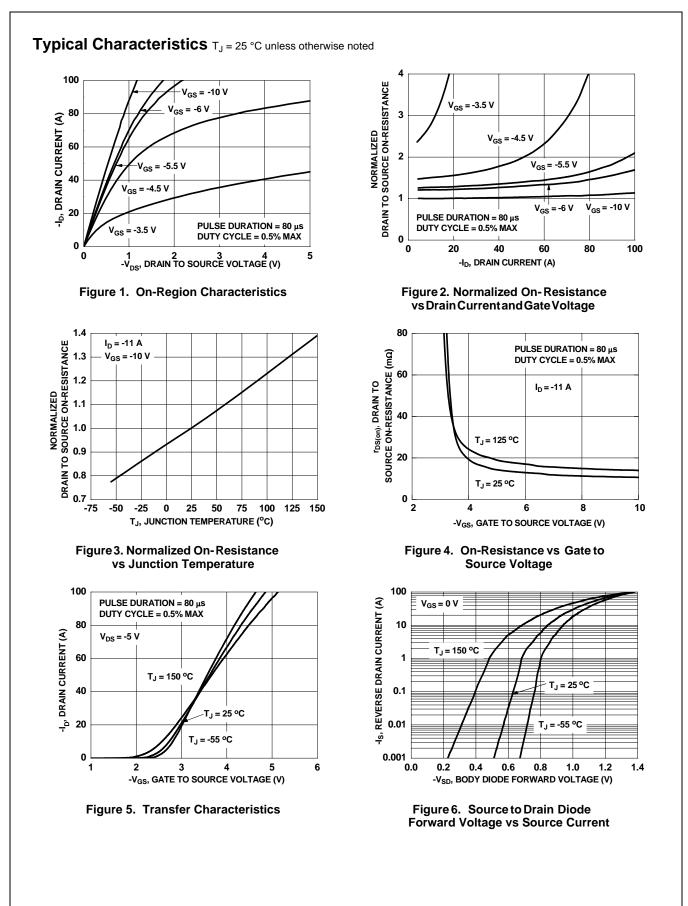
General Description

This device is an ultra low resistance P-Channel FET. It is designed for power line load switching applications and reverse polarity protection. It is especially optimized for voltage rails that can climb as high as 25V. Typical end systems include laptop computers, tablets and mobile phone. Applications include battery protection, input power line protection and charge path protection, including USB and other charge paths. The FDMA6676PZ has an enhanced V_{GS} rating of 25V specifically designed to simplify installation. When used as reverse polarity protection, with gate tied to ground and drain tied to V input, it is designed to support operating input voltages that can raise as high as 25V without the need for external Zener protection on the gate. Its small 2x2x0.8 form factor make it an ideal part for mobile and space constrained applications.

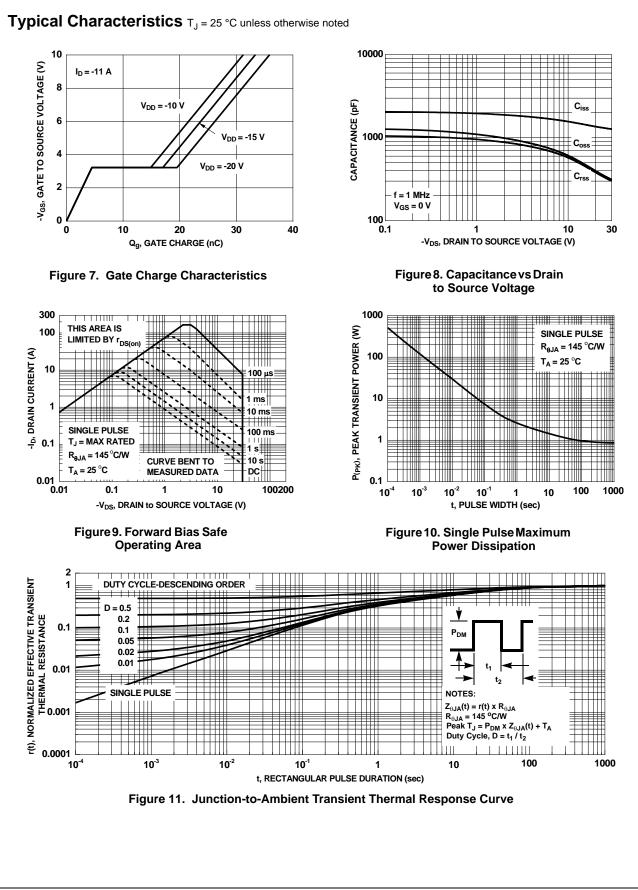
MicroFET 2X2 (Bottom View)

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			-30	V
V _{GS}	Gate to Source Voltage			±25	V
1	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-11	۸
D	-Pulsed		(Note 3)	-165	A
Power Dissipation		T _A = 25 °C	(Note 1a)	2.4	w
P _D Power Dissipatio	Power Dissipation	T _A = 25 °C	(Note 1b)	0.9	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

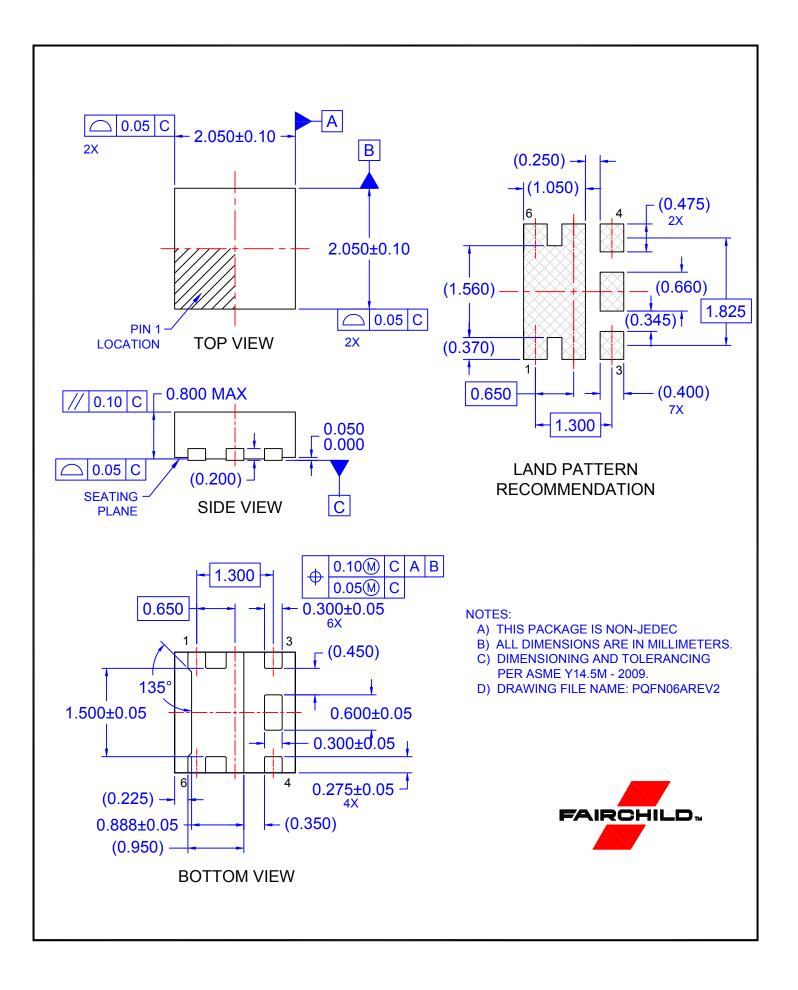

Thermal Characteristics

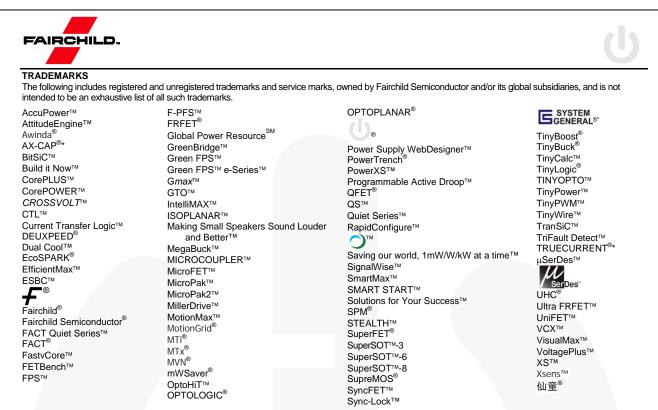
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	52	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	145	C/VV


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
676	FDMA6676PZ	MicroFET 2X2	7 "	12 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		-19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 V, V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Chara	otoristics					
	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-1.2	-2	-2.6	V
V _{GS(th)}	Gate to Source Threshold Voltage		-1.2	-2	-2.0	v
$\frac{\Delta V_{GS(th)}}{\Delta T_{.1}}$	Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		5.9		mV/°
		V _{GS} = -10 V, I _D = -11 A		11	13.5	
r	Static Drain to Source On Resistance	V _{GS} = -4.5 V, I _D = -8 A		19	27	mO
r _{DS(on)} S		V _{GS} = -10 V, I _D = -11 A, T _J = 125 °C		14.5	21	- mΩ
9 _{FS}	Forward Transconductance	$V_{DD} = -5 \text{ V}, \text{ I}_{D} = -11 \text{ A}$		38		S
				1		
•	Characteristics			1110	0400	- 5
C _{iss}	Input Capacitance	V _{DS} = -15 V, V _{GS} = 0 V, f = 1 MHz		1440 477	2160 720	pF
C _{oss}	Output Capacitance Reverse Transfer Capacitance				690	pF
C _{rss}				458 12	690	pF
R _g	Gate Resistance			12		Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time			8.8	18	ns
t _r	Rise Time	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -11 \text{ A},$		19	34	ns
t _{d(off)}	Turn-Off Delay Time			87	139	ns
t _f	Fall Time			72	115	ns
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } -10 V$		33	46	nC
*	Total Gate Charge	$V_{GS} = 0 V \text{ to } -4.5 V V_{DD} = -15 V,$		20	28	nC
Q _n						-
Q _g Q _{gs}	Gate to Source Charge	$I_{\rm D} = -11 \text{ A}$		4.5		nC
Q _{gs}	Gate to Source Charge Gate to Drain "Miller" Charge	I _D = -11 A		4.5 13		nC
Q _{gs} Q _{gd}	Gate to Drain "Miller" Charge	I _D = -11 A				
Q _{gs} Q _{gd}	-	I _D = -11 A		13		nC
Q _{gs} Q _{gd} Drain-Sou	Gate to Drain "Miller" Charge	$I_D = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_S = -2 \text{ A}$ (Note 2)		-0.7	-1.2	nC V
Q _{gs} Q _{gd}	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage	I _D = -11 A		13	-1.2 -1.4	nC
Q _{gs} Q _{gd} Drain-Sou V _{SD} t _{rr}	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note 2})$		-0.7 -0.9 31		nC V
Q _{gs} Q _{gd} Drain-Sou V _{SD} t _{rr} Q _{rr}	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage	$I_D = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_S = -2 \text{ A}$ (Note 2)		-0.7 -0.9	-1.4	nC V V
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} \qquad (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} \qquad (\text{Note 2})$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	determine	-0.7 -0.9 31 9	-1.4 50 18	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note } 2)$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note } 2)$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ where the standard of FR-4 material. R _{0CA} is		-0.7 -0.9 31 9 d by the user	-1.4 50 18	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note 2})$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ where the second of FR-4 material. R _{0CA} is the second seco	15 °C/W wh	-0.7 -0.9 31 9	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W, when mo	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note 2})$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ where the second of FR-4 material. R _{0CA} is the second seco	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W when mc on a 1 in ² pad of 2	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note 2})$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ where the second of FR-4 material. R _{0CA} is the second seco	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W, when mo	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note 2})$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ where the second of FR-4 material. R _{0CA} is the second seco	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W when mc on a 1 in ² pad of 2	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note 2})$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note 2})$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ where the second of FR-4 material. R _{0CA} is the second seco	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W when mc on a 1 in ² pad of 2	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} \text{ (Note 2)}$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} \text{ (Note 2)}$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ Pad on a 1.5 x 1.5 in. board of FR-4 material. R _{0CA} is b. 14 mm and 2 oz copper.	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W when monor on a 1 in ² pad of 2	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note } 2)$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note } 2)$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ Pad on a 1.5 x 1.5 in. board of FR-4 material. R _{0CA} is builted 2 oz copper.	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copper p a. 52 °C/W when mc on a 1 in ² pad of 2	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} \text{ (Note 2)}$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} \text{ (Note 2)}$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ Pad on a 1.5 x 1.5 in. board of FR-4 material. R _{0CA} is b. 14 mm and 2 oz copper.	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC
Q_{gs} Q_{gd} Drain-Sou V_{SD} t_{rr} Q_{rr} NOTES:	Gate to Drain "Miller" Charge Irce Diode Characteristics Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in² pad 2 oz copper p a. 52 °C/W when moon on a 1 in² pad of 2	$I_{D} = -11 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note } 2)$ $V_{GS} = 0 \text{ V}, I_{S} = -11 \text{ A} (\text{Note } 2)$ $I_{F} = -11 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ Pad on a 1.5 x 1.5 in. board of FR-4 material. R _{0CA} is builted 2 oz copper.	15 °C/W wh	-0.7 -0.9 31 9 d by the user	-1.4 50 18 's board des on a	nC V V ns nC




©2015 Fairchild Semiconductor Corporation FDMA6676PZ Rev.C

©2015 Fairchild Semiconductor Corporation FDMA6676PZ Rev.C www.fairchildsemi.com

FDMA6676PZ Single P-Channel PowerTrench[®] MOSFET

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: