

June 2016

FDMD8900

N-Channel PowerTrench® MOSFET

Q1: 30 V, 66 A, 4 m Ω Q2: 30 V, 42 A, 5.5 m Ω

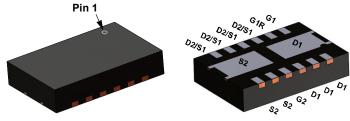
Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 4 m Ω at V_{GS} = 10 V, I_D = 19 A
- Max $r_{DS(on)}$ = 5 m Ω at V_{GS} = 4.5 V, I_D = 17 A
- Max $r_{DS(on)}$ = 6.5 m Ω at V_{GS} = 3.8 V, I_D = 15 A
- Max $r_{DS(on)}$ = 8.3 m Ω at V_{GS} = 3.5 V, I_D = 14 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 5.5 m Ω at V_{GS} = 10 V, I_D = 17 A
- Max $r_{DS(on)}$ = 6.5 m Ω at V_{GS} = 4.5 V, I_D = 15 A
- Max $r_{DS(on)} = 9 \text{ m}\Omega$ at $V_{GS} = 3.8 \text{ V}$, $I_D = 13 \text{ A}$
- Max $r_{DS(on)}$ = 12 m Ω at V_{GS} = 3.5 V, I_D = 12 A
- Ideal for Flexible Layout in Primary Side of Bridge Topology
- Termination is Lead-free and RoHS Compliant
- 100% UIL Tested
- Kelvin High Side MOSFET Drive Pin-out Capability



General Description

This devices utilizes two optimized N-ch FETs in a dual 3.3x5mm thermally enhanced power package. The HS Source and LS drain are internally connected providing a low source inductance package, helping to provide the best FOM.

Applications

- Computing
- Buck, Boost and Buck/Boost Applications
- General Purpose POL

Power 3.3 x 5

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

D1	12	G1
D1		G1R
D1	3 - 10	D2/S1
G2	[4]	D2/S1
S2	[5] (TTT) [8]	D2/S1
S2	$\begin{bmatrix} \overline{6} \end{bmatrix}$ $\begin{bmatrix} \overline{7} \end{bmatrix}$	D2/S1

Symbol	Paramete	Parameter			Q2	Units
V_{DS}	Drain to Source Voltage			30	30	V
V_{GS}	Gate to Source Voltage			±12	±12	V
	Drain Current -Continuous	T _C = 25 °C	(Note 5)	66	42	
	-Continuous	T _C = 100°C	(Note 5)	42	26	Α
'D	-Continuous	T _A = 25 °C	(Note 1a)	19	17	_ A
	-Pulsed		(Note 4)	280	210	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	73	54	mJ
В	Power Dissipation	T _C = 25 °C		27	15	W
P_{D}	Power Dissipation $T_A = 25 ^{\circ}\text{C}$ (Note 1a)		2	2.1	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to	+150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	4.7	8.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	6	U	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8900	FDMD8900	Power 3.3 x 5 13 "		12 mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted.

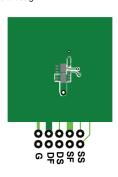
Symbol	Parameter Test Conditions		Туре	Min.	Тур.	Max.	Units
Off Chara	ecteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1	30			V
Brain to course Breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q2	30			•	
ΔBV_{DSS}	Breakdown Voltage Temperature	I_D = 250 μ A, referenced to 25 °C	Q1	14			mV/°C
ΔT_{J}	Coefficient	$I_D = 250 \mu A$, referenced to 25 °C	Q2	13			IIIV/ C
	Zara Cata Valtaga Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	Q1			1	^
I _{DSS} Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	Q2			1	μА	
I _{GSS}	Cata to Source Leakage Current	V _{GS} = ±12 V, V _{DS} = 0 V	Q1			±100	nA
	Gate to Source Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$	Q2			±100	IIA

On Characteristics

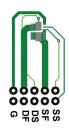
V	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	Q1	0.8	1.3	2.5	mV
$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	Q2	1	1.4	2.5	IIIV
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage	I_D = 250 μ A, referenced to 25 °C	Q1	-4			mV/°C
ΔT_{J}	Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C	Q2	-4			IIIV/ C
		$V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$			3.4	4	
		$V_{GS} = 4.5 \text{ V}, I_D = 17 \text{ A}$			4	5	
		$V_{GS} = 3.8 \text{ V}, I_D = 15 \text{ A}$	Q1		4.3	6.5	
		$V_{GS} = 3.5 \text{ V}, I_D = 14 \text{ A}$			4.6	8.3	
r	Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}, T_J = 125 ^{\circ}\text{C}$			4.6	6	mΩ
r _{DS(on)}	Diain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 17 \text{ A}$			4.5	5.5	11122
		$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$			5.4	6.5	
		$V_{GS} = 3.8 \text{ V}, I_D = 13 \text{ A}$	Q2		6	9	
		$V_{GS} = 3.5 \text{ V}, I_D = 12 \text{ A}$			6.6	12	
		V_{GS} = 10 V, I_{D} = 17 A , T_{J} =125 °C			5.8	6.9	
a	Forward Transconductance	V _{DS} = 5 V, I _D = 19 A	Q1		86		S
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 17 \text{ A}$	Q2		80		3

Dynamic Characteristics

C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	1735 1210	2605 1815	pF
C _{oss}	Output Capacitance	Q2:	Q1 Q2	462 356	695 535	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$	Q1 Q2	47 52	75 80	pF
R _g	Gate Resistance		Q1 Q2	0.8 1.9		Ω


Switching Characteristics

t _{d(on)}	Turn-On Delay Time			Q1 Q2	8.7 7.1	17 14	ns
t _r	Rise Time		Q1: $V_{DD} = 15 \text{ V}, I_{D} = 19 \text{ A}, R_{GEN} = 6 \Omega$ Q2: $V_{DD} = 15 \text{ V}, I_{D} = 17 \text{ A}, R_{GEN} = 6 \Omega$		2.3	10 10	ns
t _{d(off)}	Turn-Off Delay Time				25 22	40 35	ns
t _f	Fall Time	VDD = 13 V, ID = 1			2.4 2.3	10 10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V		Q1 Q2	25 19	35 27	nC
Qg	Total Gate Charge	V _{GS} = 0 V to 4.5 V	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_{D} = 15 \text{ V},$ $I_{D} = 19 \text{ A}$		12 8.8	17 12	nC
Q _{gs}	Gate to Source Gate Charge		Q2: V _{DD} = 15 V,	Q1 Q2	3.6 2.7		nC
Q _{gd}	Gate to Drain "Miller" Charge		$V_{DD} = 15 \text{ V},$ $I_{D} = 17 \text{ A}$		2.7 2.6		nC


Electrical Characteristics T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Test Conditions	Type	Min.	Тур.	Max.	Units	
Drain-Sou	Orain-Source Diode Characteristics							
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 19 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V}, I_S = 17 \text{ A}$ (Note 2)	Q1 Q2		0.8 0.8	1.2 1.2	V	
t _{rr}	Reverse Recovery Time	Q1: I _F = 19 A, di/dt = 100 A/μs	Q1 Q2		26 22	42 35	ns	
Q _{rr}	Reverse Recovery Charge	Q2: I _F = 17 A, di/dt = 100 A/μs	Q1 Q2		10 7.8	20 16	nC	

1. R_{0,1A} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,1C} is guaranteed by design while R_{0,1C} is determined by the user's board design.

a. 60 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 130 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %. 3. Q1: E_{AS} of 73 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 25 A. Q2: E_{AS} of 54 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 6 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 20 A.
- 4. Pulse Id refers to Figure "Forward Bias Safe Operation Area".
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

Typical Characteristics (Q1 N-Channel) T_J = 25°C unless otherwise noted.

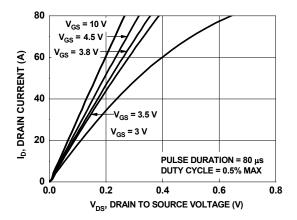


Figure 1. On-Region Characteristics

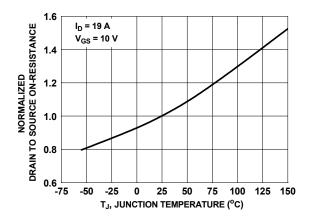


Figure 3. Normalized On Resistance vs. Junction Temperature

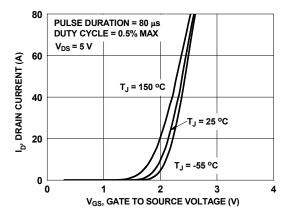


Figure 5. Transfer Characteristics

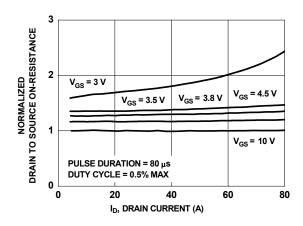


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

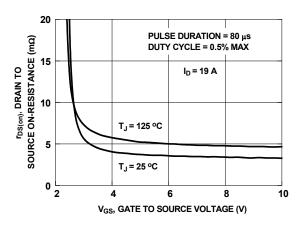


Figure 4. On Resistance vs. Gate to Source Voltage

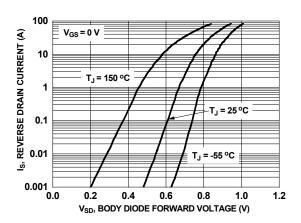


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics (Q1 N-Channel) T_J = 25°C unless otherwise noted.

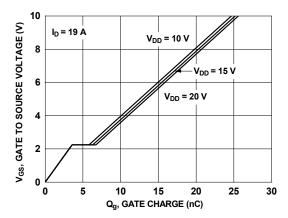


Figure 7. Gate Charge Characteristics

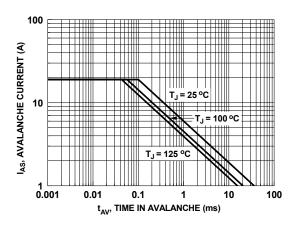


Figure 9. Unclamped Inductive Figure 10. Switching Capability

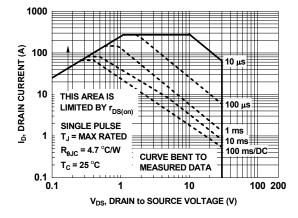


Figure 12. Forward Bias Safe Operating Area

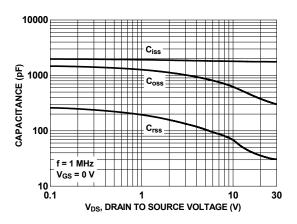


Figure 8. Capacitance vs. Drain to Source Voltage

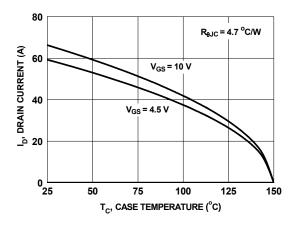


Figure 11. Maximum Continuous Drain Current vs. Case Temperature

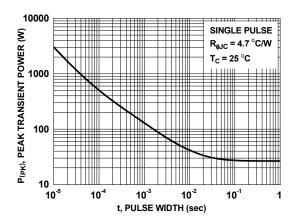


Figure 13. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q1 N-Channel) T_J = 25°C unless otherwise noted.

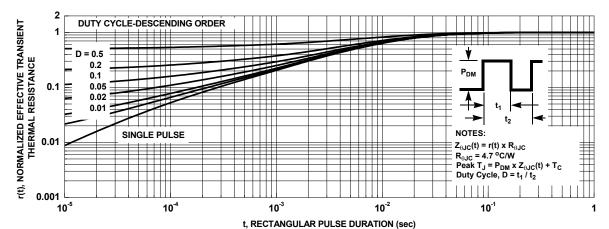


Figure 14. Junction-to-Case Transient Thermal Response Curve

Typical Characteristics (Q2 N-Channel) T_J = 25 °C unless otherwise noted.

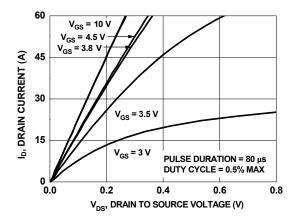


Figure 14. On- Region Characteristics

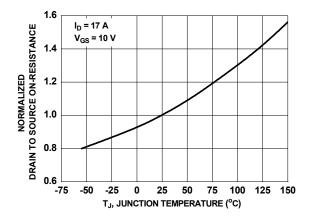


Figure 16. Normalized On-Resistance vs. Junction Temperature

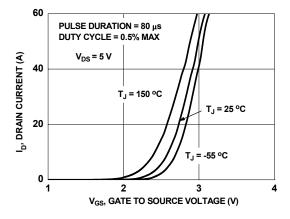


Figure 18. Transfer Characteristics

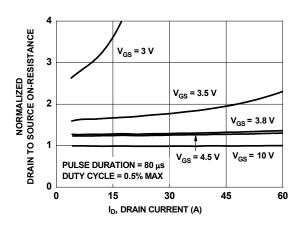


Figure 15. Normalized on-Resistance vs. Drain Current and Gate Voltage

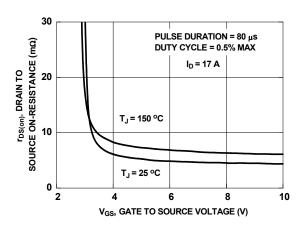


Figure 17. On-Resistance vs. Gate to Source Voltage

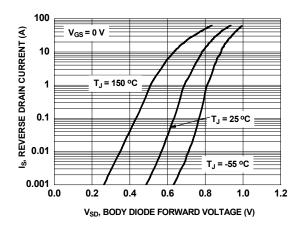


Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics (Q2 N-Channel) T_{.I} = 25°C unless otherwise noted.

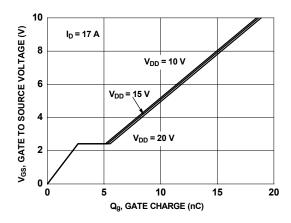


Figure 20. Gate Charge Characteristics

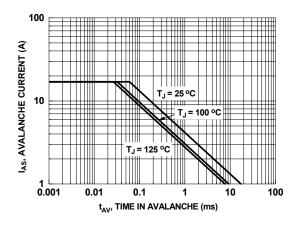


Figure 22. Unclamped Inductive Switching Capability

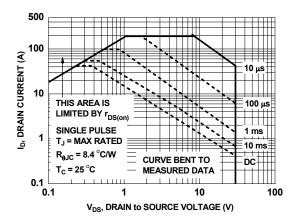


Figure 24. Forward Bias Safe Operating Area

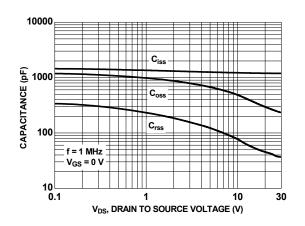


Figure 21. Capacitance vs. Drain to Source Voltage

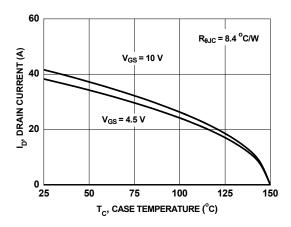


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

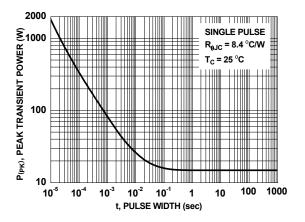


Figure 25. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q2 N-Channel) T_J = 25 °C unless otherwise noted.

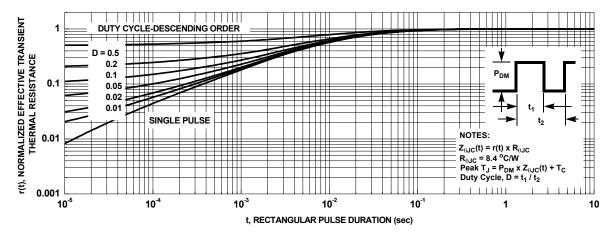
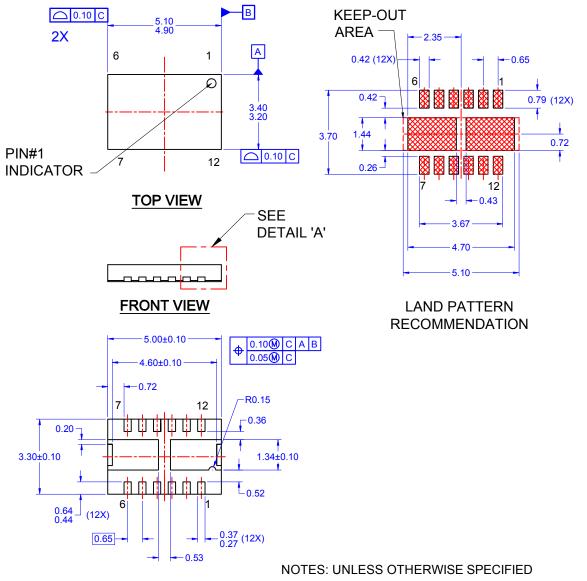



Figure 26. Junction-to-Case Transient Thermal Response Curve

BOTTOM VIEW

0.80 0.70

| 0.10 | C | E |
| 0.25 | 0.05 | SEATING
| DETAIL 'A' | SCALE: 2:1

- A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229 DATED 8/2012
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.
- F) DRAWING FILE NAME: MKT-PQFN12BREV1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FDMD8900