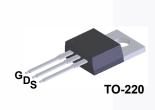


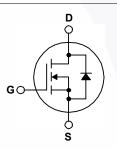
November 2013

FDP020N06B — N-Channel PowerTrench[®] MOSFET

FDP020N06B N-Channel PowerTrench[®] MOSFET $60 V, 313 A, 2 m\Omega$

Features


- $R_{DS(on)}$ = 1.65 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 100 A
- Low FOM R_{DS(on)} * Q_G
- Low Reverse-Recovery Charge, Q_{rr} = 194 nC
- Soft Reverse-Recovery Body Diode
- Enables High Efficiency in Synchronous Rectification
- Fast Switching Speed
- 100% UIL Tested
- RoHS Compliant


Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies
- Renewable System

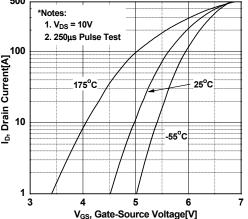
Absolute Maximum Ratings T_C = 25°C unless otherwise noteed.

Symbol		FDP020N06B_F102	Unit		
V _{DSS}	Drain to Source Voltage	60	V		
V _{GSS}	Gate to Source Voltage		±20	V	
I _D		- Continuous (T _C = 25 ^o C, Silicon Limited)	313*		
	Drain Current	- Continuous (T _C = 100 ^o C, Silicon Limited)	221*	Α	
		- Continuous (T _C = 25 ^o C, Package Limited)	120	1	
I _{DM}	Drain Current	- Pulsed (Note 1)	1252	Α	
E _{AS}	Single Pulsed Avalanche	1859	mJ		
dv/dt	Peak Diode Recovery dv/	6.0	V/ns		
P _D	Power Dissipation	(T _C = 25°C)	333	W	
	Power Dissipation	- Derate Above 25°C	2.2	W/ºC	
T _J , T _{STG}	Operating and Storage Te	-55 to +175	°C		
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C	

* Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	FDP020N06B_F102	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.45	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	0,00


	Part Number Top Mark Packa		Package	e Packing Method Reel Size		Тар	e Width	Qua	ntity
		TO-220	Tube	N/A		N/A	50 units		
Electrical	Chara	acteristics T _c =	= 25°C unless	otherwise noted.					
Symbol	Parameter			Test Conditions		Min.	Тур.	Max.	Unit
Off Charact	eristics	5							
BV _{DSS}	Drain to Source Breakdown Voltage		/oltage	I _D = 250 μA, V _{GS} = 0 V		60	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient		ure	$I_D = 250 \ \mu$ A, Referenced to 25° C		-	0.03	-	V/ºC
	Zero Gate Voltage Drain Current		ont	$V_{DS} = 48 V, V_{GS} = 0 V$ $V_{DS} = 48 V, T_{C} = 150^{\circ}C$		-	-	1	μA
DSS			ent			-	-	500	
GSS	Gate to Body Leakage Current		nt	V_{GS} = ±20 V, V_{DS} = 0	V	-	-	±100	nA
On Charact	eristics	5							
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} = V _{DS} , I _D = 250 μA		2.5	3.3	4.5	V
R _{DS(on)}	Static Dr	ain to Source On Res	sistance	V _{GS} = 10 V, I _D = 100		-	1.65	2.0	mΩ
9 _{FS}	Forward Transconductance			V _{DS} = 10 V, I _D = 100 A		-	263	-	S
Dynamic Cl	haracte	ristics							
C _{iss}	Input Capacitance					-	16100	20930	pF
C _{oss}		Capacitance		V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz		-	3840	4992	pF
C _{rss}		Transfer Capacitance	e			-	127	-	pF
C _{oss(er)}	Energy Related Output Capacitance			V _{DS} = 30 V, V _{GS} = 0 V	-	5897	-	pF	
Q _{g(tot)}	0,	te Charge at 10V		$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 100 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4)		-	206	268	nC
Q _{gs}	Gate to S	Source Gate Charge				-	87	-	nC
Q _{gs2}		Threshold to Plateau				-	36	-	nC
Q _{gd}	Gate to [Drain "Miller" Charge				-	34	-	nC
EŠR	Equivalent Series Resistance(G-S)		(G-S)	f = 1 MHz		-	0.9	-	Ω
Switching C	Charact	eristics							
t _{d(on)}	-	Delay Time					74	158	ns
t _r		Rise Time		$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 100 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 4.7 \Omega$ (Note 4)		-	62	134	ns
t _{d(off)}		Delay Time				-	112	234	ns
t _f	Turn-Off	Fall Time				7 -	42	94	ns
)rain-Sour	ce Diod	e Characteristic	`e						
		n Continuous Drain to		de Forward Current		_	_	313*	А
	Maximun	n Pulsed Drain to Sou	urce Diode Fo			-	-	1252	Α
V _{SD}	Drain to Source Diode Forward Voltage		V _{GS} = 0 V, I _{SD} = 100 A		-	-	1.25	V	
t _{rr}	Reverse	se Recovery Time		$V_{GS} = 0 V, V_{DD} = 30 V, I_{SD} = 100 A,$		-	106	-	ns
Q _{rr}	Reverse Recovery Charge			$dI_{F}/dt = 100 \text{ A}/\mu \text{s}$		-	194	-	nC

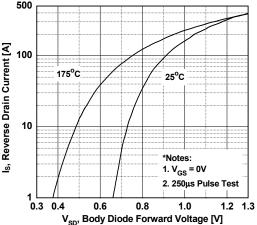
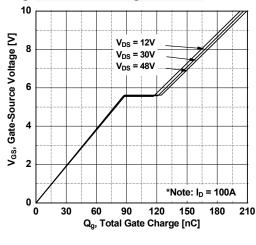
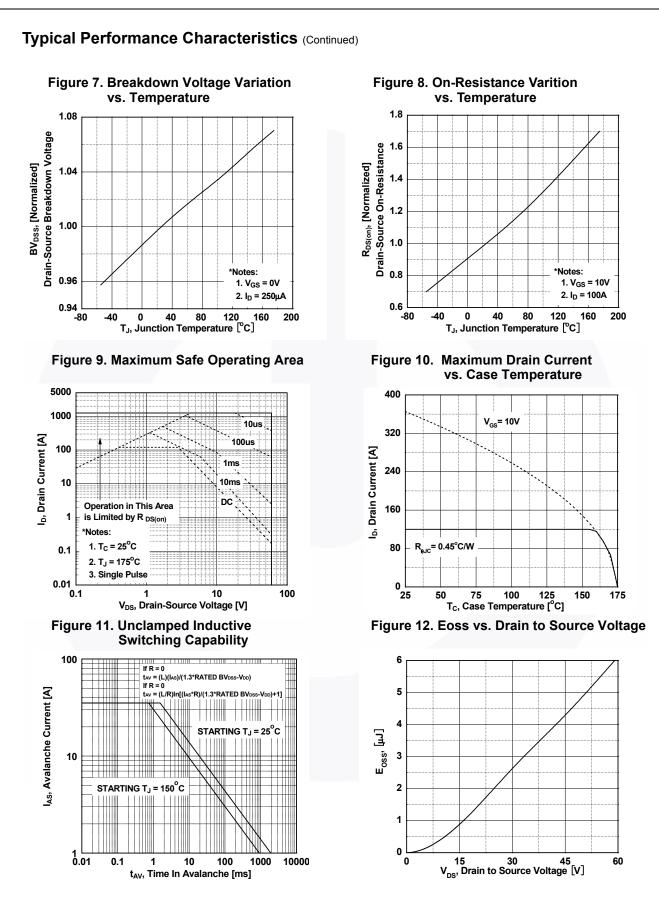
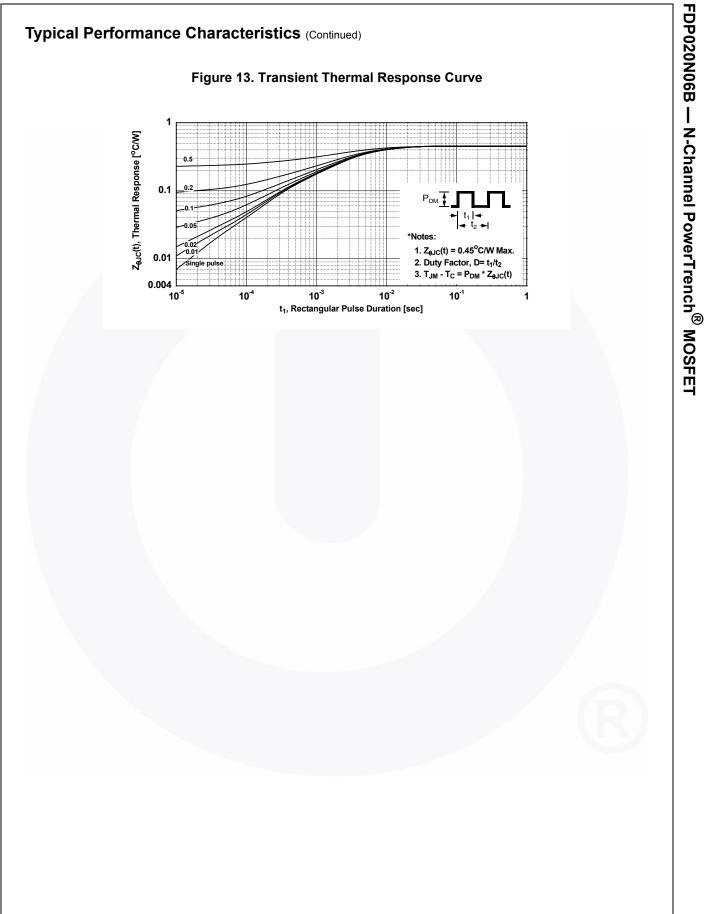
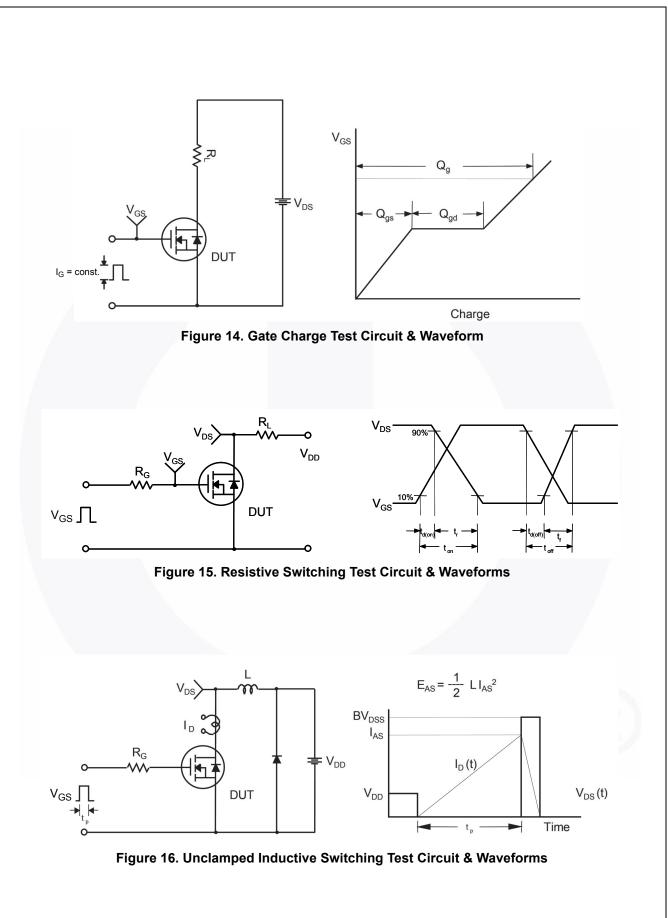

Typical Performance Characteristics

Figure 1. On-Region Characteristics


Figure 2. Transfer Characteristics



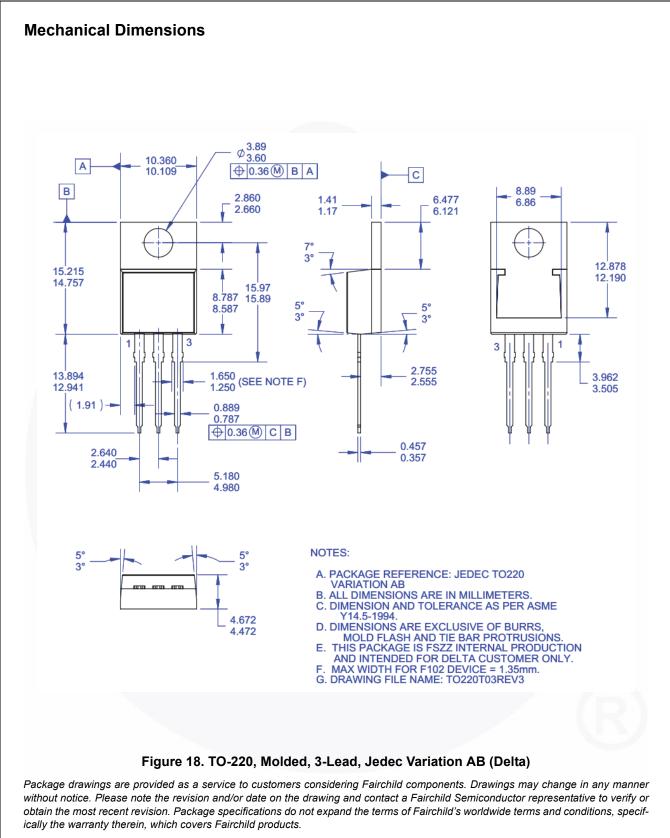

FDP020N06B Rev. C8



©2011 Fairchild Semiconductor Corporation FDP020N06B Rev. C8

4

www.fairchildsemi.com


FDP020N06B — N-Channel PowerTrench[®] MOSFET

6

DUT + v_{DS} a ۱_{SD} م L Driver R_G, Same Type as DUT L F ∨_{DD} $\prod V_{GS}$ • dv/dt controlled by R_{G} • I_{SD} controlled by pulse period Î Gate Pulse Width V_{GS} D = Gate Pulse Period 10V (Driver) I_{FM}, Body Diode Forward Current I _{SD} di/dt (DUT) I_{RM} Body Diode Reverse Current V_{DS} (DUT) Body Diode Recovery dv/dt V_{SD} V_{DD} Body Diode Forward Voltage Drop Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

FDP020N06B Rev. C8

FDP020N06B — N-Channel PowerTrench[®] MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-0I3

FDP020N06B — N-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

	an such trauemarks.		
AccuPower™	F-PFS™		Sync-Lock™
AX-CAP [®] * BitSiC™	FRFET [®] Global Power Resource SM	PowerTrench [®]	SYSTEM ®*
		PowerXS™ Programmable Active Droop™ QEET [®] QS™ Quiet Series™ RapidConfigure™	GENERAL TinyBoost [®] TinyBuck [®] TinyCalc™ TinyLogic [®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT [®] + µSerDes™ ScrDes [™] UHC [®]
FACT Quiet Series™ FACT [®] FAST [®] FastvCore™ FETBench™ FPS™	MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR®	SuperFET [®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS [®] SyncFET™	Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FDP020N06B — N-Channel PowerTrench[®] MOSFE⁻

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDP020N06B_F102