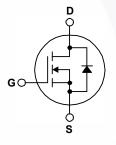


FDP22N50N N-Channel UniFETTM II MOSFET 500 V, 22 A, 220 mΩ

Features

- $R_{DS(on)}$ = 185 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 11 A
- Low Gate Charge (Typ. 49 nC)
- Low C_{rss} (Typ. 24 pF)
- 100% Avalanche Tested
- Improve dv/dt Capability
- RoHS Compliant


Applications

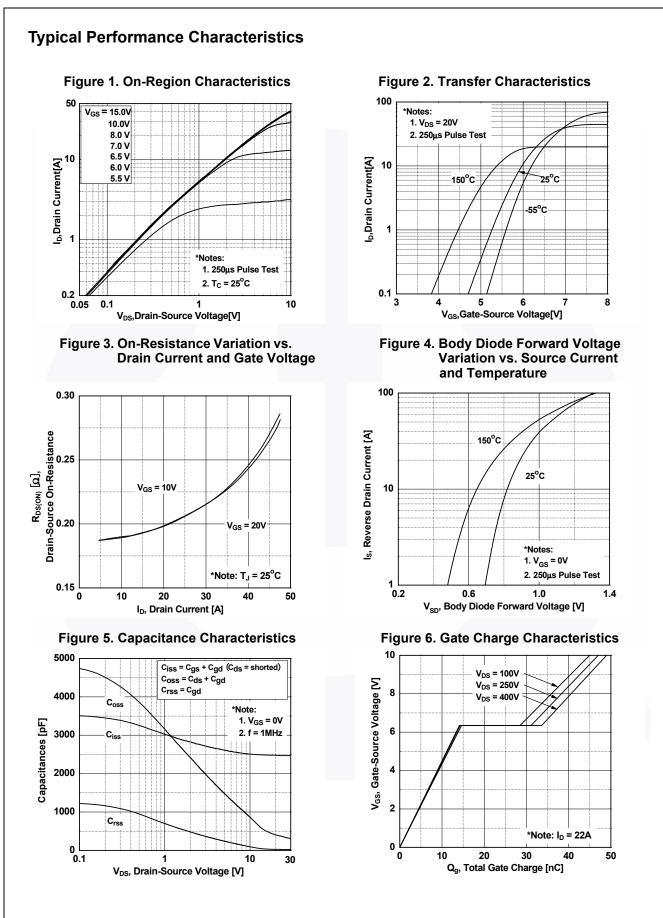
- PDP TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

Description

UniFETTM II MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on advanced planar stripe and DMOS technology. This advanced MOSFET family has the smallest on-state resistance among the planar MOSFET, and also provides superior switching performance and higher avalanche energy strength. In addition, internal gate-source ESD diode allows UniFET II MOSFET to withstand over 2kV HBM surge stress. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

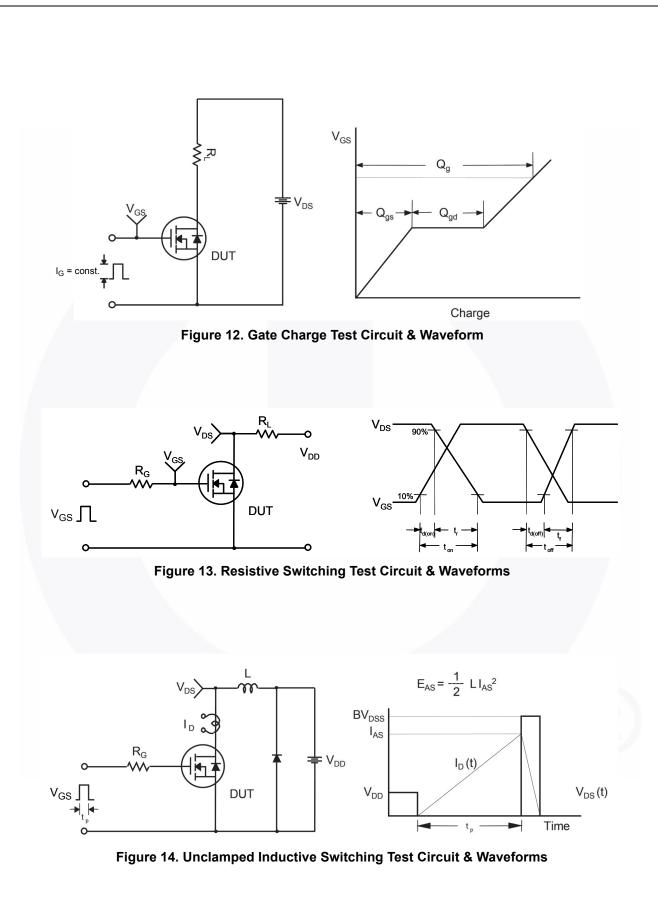
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FDP22N50N	Unit	
V _{DSS}	Drain to Source Voltage			500	V	
V _{GSS}	Gate to Source Voltage			±30	V	
I _D	Drain Current	- Continuous (T _C = 25 ^o C)		22		
		- Continuous (T _C = 100 ^o C)		13.2	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	88	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			1000	mJ	
I _{AR}	Avalanche Current		(Note 1)	22	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	31.25	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	10	V/ns	
P _D	Power Dissipation	$(T_{\rm C} = 25^{\rm o}{\rm C})$		312.5	W	
		- Derate Above 25 ^o C		2.5	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperatu	re for Soldering, 1/8" from Case for	5 Seconds	300	°C	

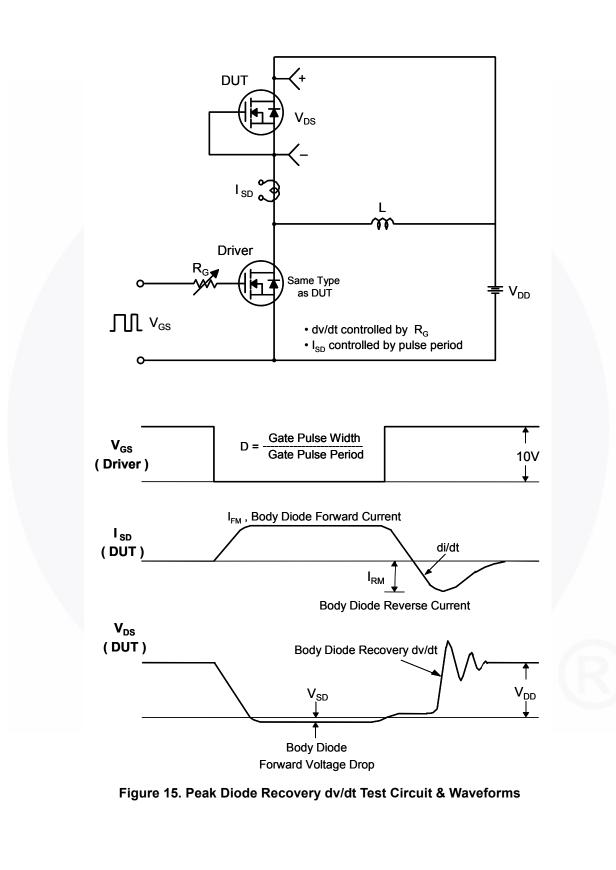

Thermal Characteristics

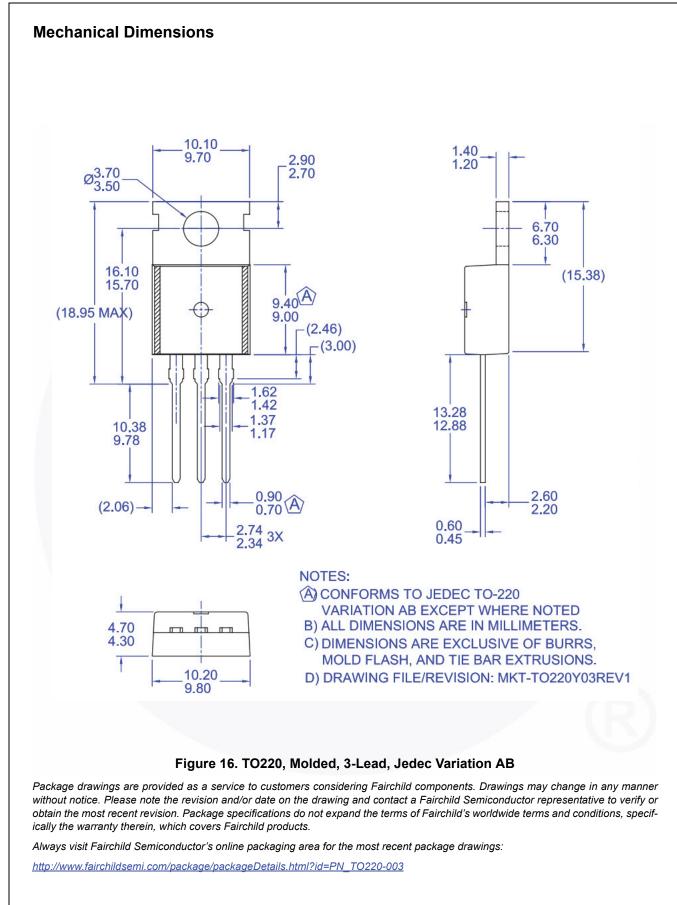
Symbol	/mbol Parameter FE		Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.4	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W


November 2013


Faitinu	Part Number Top Mark		Package	Packing Method	Reel Size	e Ta	ape Width	Qu	antity	
FDP22	150N	FDP22N50N	TO-220	Tube	N/A		N/A		50 units	
lectrica	l Chara	cteristics T _c = 25°C	unless other	nvise noted		1		<u> </u>		
Symbol		Parameter		Test Condition	IS	Min.	Тур.	Max.	Unit	
	4				-					
Off Charac							1	1	1	
BV _{DSS}	Drain to Source Breakdown Voltage		e I _D =	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V,$		500	-	-	V	
ΔBV _{DSS} /ΔTJ	Breakdown Voltage Temperature Coefficient		_	I_D = 250 µA, Referenced to 25 ^o C		-	0.45	-	V/ºC	
500	Zero Gate	e Voltage Drain Current		_S = 500 V, V _{GS} = 0 V		-	-	1	μA	
DSS	2610 040	e voltage Drain Guirent	V _{DS}	_S = 400 V, T _C = 125 ^o C	•	-	-	10	μΛ	
GSS	Gate to Body Leakage Current		V _G	$_{\rm S}$ = ±30 V, V _{DS} = 0 V		-	-	±100	nA	
On Charac	teristics									
V _{GS(th)}	Gate Thr	eshold Voltage	Ve	_S = V _{DS} , I _D = 250 μA		3.0	-	5.0	V	
R _{DS(on)}		ain to Source On Resistan		_S = 10 V, I _D = 11 A		-	0.185	0.220	Ω	
JFS		Transconductance		_S = 20 V, I _D = 11 A		-	24.4	-	S	
Dynamic C	haracter	istics							_	
C _{iss}	Input Cap					-	2456	3200	pF	
C _{oss}		apacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		-	351	460	pF	
Crss		Transfer Capacitance	f =				24	50	pF	
Q _{g(tot)}		e Charge at 10V	N/	- 400 \ (- 22 A			49	65	nC	
Q_{gs}		ource Gate Charge		_S = 400 V, I _D = 22 A, _S = 10 V	-		15	-	nC	
Q _{gd}		Prain "Miller" Charge	• G	5 10 1	(Note 4)		19	-	nC	
Switching	Characte	aristics								
-		Delay Time					22	55		
d(on)		Rise Time	Vor	_o = 250 V, I _D = 22 A,	_	-	22	55 110	ns	
r				$R_{G} = 4.7 \Omega$		-	50 48	110	ns	
d(off)	Turn-Off F	Delay Time			(Nata 4)	-	40 35	80	ns ns	
if					(Note 4)		55	00	115	
Drain-Soui		e Characteristics								
S		Continuous Drain to Sour					-	22	A	
SM		Pulsed Drain to Source D				-	-	88	A	
√ _{SD}		Source Diode Forward Volt	age V _{GS}	_S = 0 V, I _{SD} = 22 A		-	-	1.4	V	
rr		Recovery Time		_S = 0 V, I _{SD} = 22 A,		-	472	-	ns	
Q _{rr}	Reverse F	Recovery Charge	dI _F /	/dt = 100 A/μs		-	6.5		μC	

FDP22N50N — N-Channel UniFETTM II MOSFET


©2009 Fairchild Semiconductor Corporation FDP22N50N Rev. C1



FDP22N50N — N-Channel UniFETTM II MOSFET

FDP22N50N — N-Channel UniFETTM II MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

	Such li auchiarka.		
AccuPower™F-IAX-CAP®*FRBitSiC™GMBuild it Now™GrCorePUS™GrCorePOWER™GrCROSSVOLT™GrCrurent Transfer Logic™IntDual Cool™MaEcoSPARK®anEfficentMax™MiFairchild®MiiFairchild®MiiFACT Quiet Series™McFACT®OpFast%OpFast%Op	PFS™ RFET® lobal Power Resource SM reen FPS™ reen FPS™ e-Series™ max™ TO™ telliMAX™ JOPLANAR™ larking Small Speakers Sound Louder nd Better™ legaBuck™ IICROCOUPLER™ licroPak™ licroPak™ licroPak™ licroPak™ biotionMax™ WSaver® ptoHiT™ PTOLOGIC® PTOPLANAR®	O PowerTrench [®] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Qiuiet Series [™] RapidConfigure [™] O T ^M Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -8 SuperSOT [™] -8 S	Sync-Lock TM General TinyBoost [®] TinyBuck [®] TinyCalc TM TinyCorto TM TinyPower TM TinyPower TM TinyPWM TM TranSIC TM TranSIC TM TranSIC TM TRUECURRENT μ SerDes TM Ultra FRFET TM VCX TM VisualMax TM VoltagePlus TM XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

T[®]

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDP22N50N