

FDPC5018SG

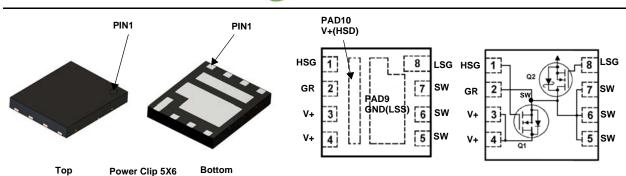
PowerTrench[®] Power Clip 30V Asymmetric Dual N-Channel MOSFET

Features

Q1: N-Channel

- Max $r_{DS(on)} = 5.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 17 \text{ A}$
- Max $r_{DS(on)}$ = 6.5 m Ω at V_{GS} = 4.5 V, I_D = 14 A

Q2: N-Channel


- Max $r_{DS(on)}$ = 1.6 m Ω at V_{GS} = 10 V, I_D = 32 A
- Max $r_{DS(on)}$ = 2.0 m Ω at V_{GS} = 4.5 V, I_D = 28 A
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- RoHS Compliant

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load

Pin	Name	Description	Pin	Name	Description	Pin	Name	Description
1	HSG	High Side Gate	3,4,10	V+(HSD)	High Side Drain	8	LSG	Low Side Gate
2	GR	Gate Return	5,6,7	SW	Switching Node, Low Side Drain	9	GND(LSS)	Low Side Source

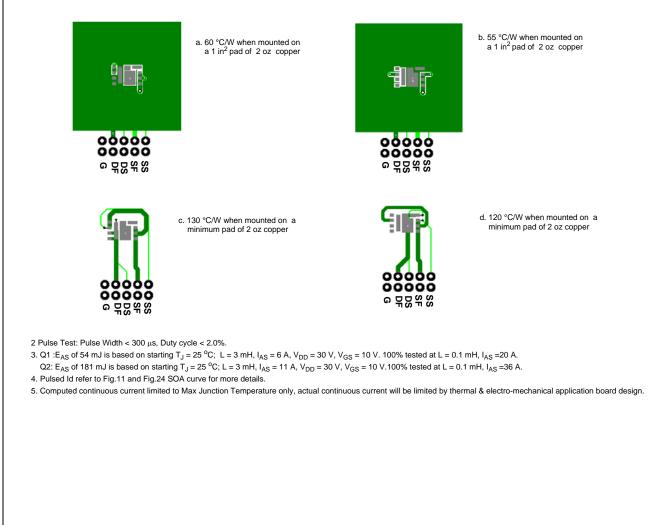
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

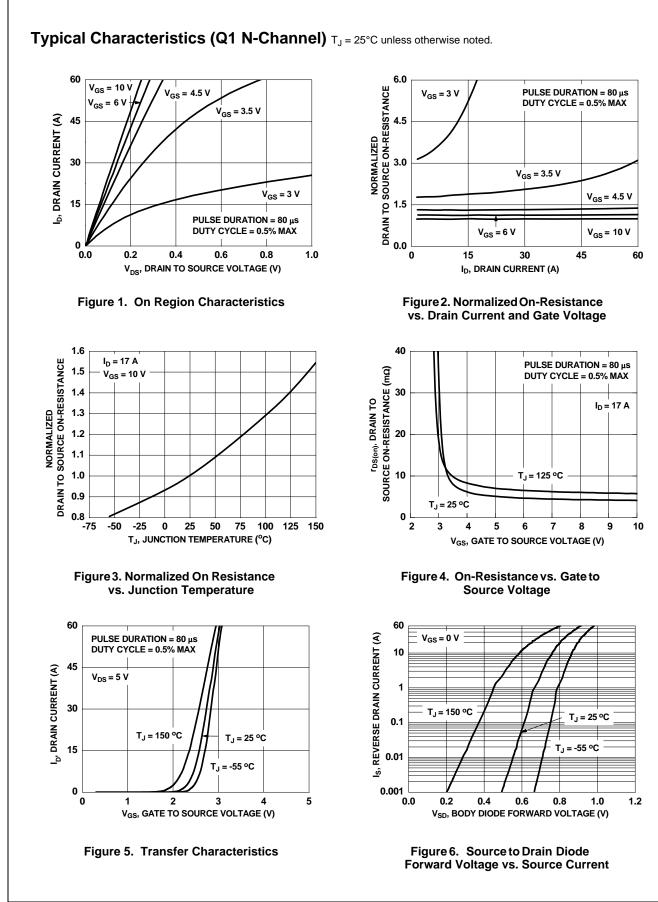
Symbol	Parameter			Q2	Units	
V _{DS}	Drain to Source Voltage			30	V	
Bvdsst	Bvdsst (transient) < 100nS			32.5	V	
V _{GS}	Gate to Source Voltage			±12	V	
	Drain Current -Continuous	T _C = 25 °C (Note 5)	56	109		
	-Continuous	T _C = 100 °C (Note 5)	35	69		
D	-Continuous	T _A = 25 °C	17 ^{Note1a}	32 ^{Note1b}	A	
	-Pulsed	T _A = 25 °C (Note 4)	227	704		
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	54	181	mJ	
	Power Dissipation for Single Operation T		23	29		
P _D	Power Dissipation for Single Operation	T _A = 25 °C	2.1 ^{Note1a}	2.3 ^{Note1b}	W	
	Power Dissipation for Single Operation	T _A = 25 °C	1.0 ^{Note1c}	1.1 ^{Note1d}	1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range -55 to +150				°C	

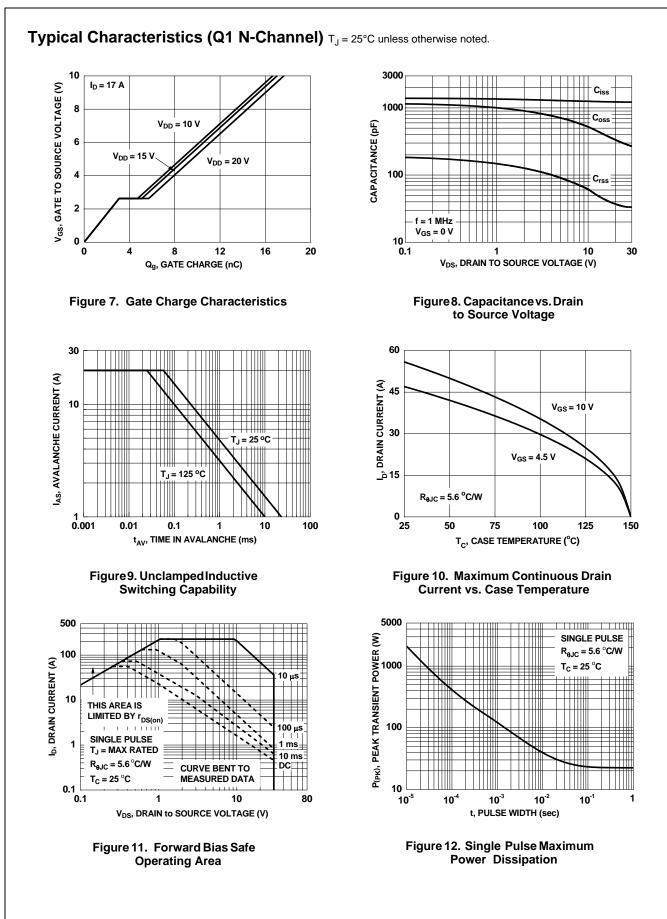
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	5.6	4.3	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	60 ^{Note1a}	55 ^{Note1b}	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	130 ^{Note1c}	120 ^{Note1d}	

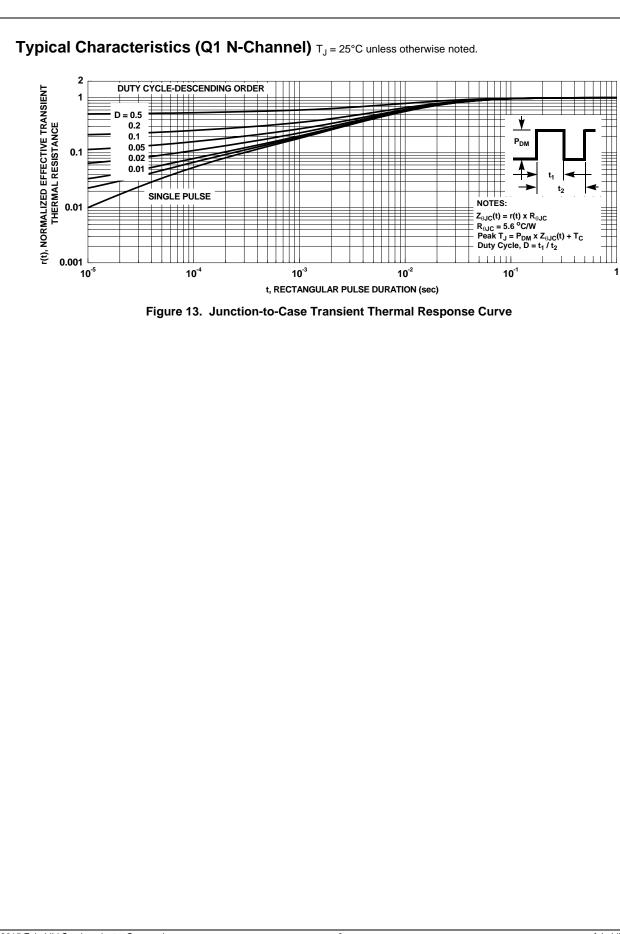
Device Marking		Device	Package Reel Size		Tape Width			Quantity	
FDPC5018SG FI		FDPC5018SG	Power Clip 56 13 "		12 mm			3000 units	
Electric	al Chara	cteristics T _J = 25 °C	unless otherwise not	ed.					
Symbol		Parameter	Test Con		Туре	Min	Тур	Max	Units
Off Chara	acteristics								
BV _{DSS}	Drain to Sc	ource Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = I_D = 1 \ mA, \ V_{GS} = 0$		Q1 Q2	30 30			V
ΔBV _{DSS} ΔT.I	Breakdown Coefficient	Noltage Temperature	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C		Q1 Q2		15 19		mV/°C
I _{DSS}	Zero Gate	Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$ $V_{DS} = 24 V, V_{GS} = 0 V$		Q1 Q2			1 500	μΑ μΑ
I _{GSS}	Gate to Source Leakage Current, Forward			V _{GS} = 20 V, V _{DS} = 0 V				100 100	nA nA
On Chara	cteristics				11		1		I
V _{GS(th)}		urce Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2$ $V_{GS} = V_{DS}, I_D = 1$		Q1 Q2	1.0 1.0	1.7 1.6	3.0 3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{II}}$		urce Threshold Voltage re Coefficient	$I_D = 250 \ \mu\text{A}, \text{ refere}$ $I_D = 10 \ \text{mA}, \text{ refere}$	nced to 25 °C	Q1 Q2	1.0	-5 -3	0.0	mV/°C
			$V_{GS} = 10V, I_D = 17$ $V_{GS} = 4.5 V, I_D = 1$ $V_{GS} = 10 V, I_D = 1$	A 4 A	Q1		4.1 5.4 5.7	5.0 6.5 7.0	
r _{DS(on)}	Drain to Sc	ource On Resistance	$V_{GS} = 10V, I_D = 32$ $V_{GS} = 4.5 V, I_D = 2$ $V_{GS} = 10 V, I_D = 32$	A 8 A	Q2		1.4 1.7 2.1	1.6 2.0 2.4	mΩ
9fs	Forward Tr	ansconductance	$V_{DS} = 5 V, I_D = 17$ $V_{DS} = 5 V, I_D = 32$		Q1 Q2		93 188		S
Dvnamic	Character	ristics							
C _{iss}	Input Capa		Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ		Q1 Q2		1224 4593	1715 6430	pF
C _{oss}	Output Cap	bacitance			Q1 Q2		397 1210	560 1695	pF
C _{rss}	Reverse Tr	ansfer Capacitance	Q2: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ		Q1 Q2		42 80	60 115	pF
R _g	Gate Resistance				Q1 Q2	0.1 0.1		1.5 2.4	Ω
Switching	g Characte	eristics							
t _{d(on)}	Turn-On De				Q1 Q2		8 14	16 25	ns
t _r	Rise Time		Q1: V _{DD} = 15 V, I _D = 1	7 A, R _{GEN} = 6 Ω	Q1 Q2		2	10 10	ns
t _{d(off)}	Turn-Off De	elay Time	Q2: V _{DD} = 15 V, I _D = 32 A, R _{GEN} = 6 Ω		Q1 Q2		18 38	33 61	ns
t _f	Fall Time				Q1 Q2		2 4	10 10	ns
Qg	Total Gate	Charge	$V_{GS} = 0 V$ to 10 V	Q1	Q1 Q2		17 62	24 87	nC
Qg	Total Gate	Charge	$V_{GS} = 0 V$ to 4.5 V		Q1 Q2		8 28	11 40	nC
Q _{gs}	Gate to So	urce Gate Charge		Q2 V _{DD} = 15 V, I _D	Q1 Q2		3.1 11		nC
Q _{gd}	Gate to Dra	ain "Miller" Charge		= 32 A			2.0 5.3		nC

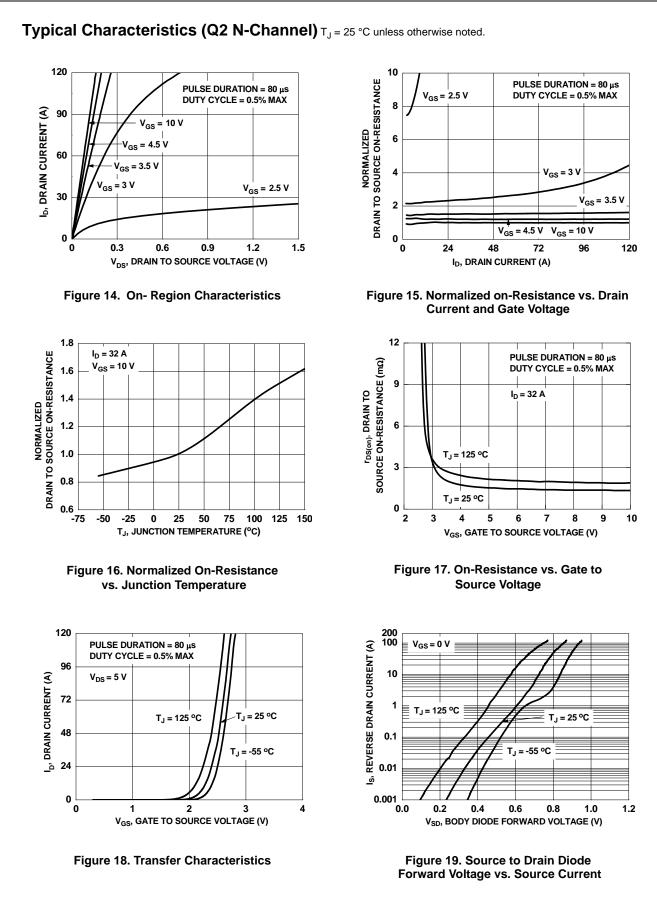

Package Marking and Ordering Information

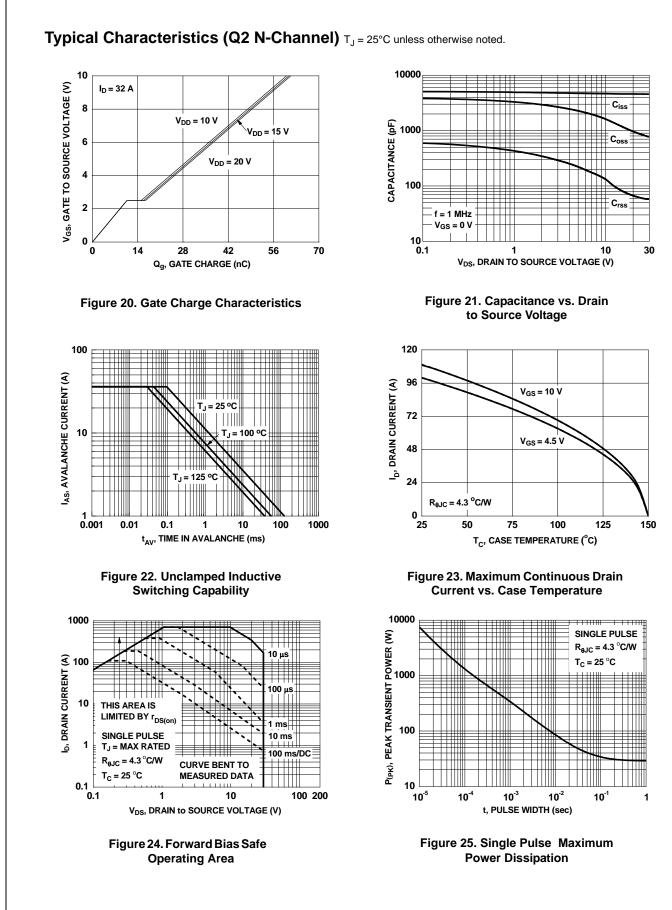

Т
⊡
2
ö
80
õ
<u> </u>
PC
š
è
Ĩ
7
er
ັດ
Z
2
D
Ş
é
Ť
C
Ĭ
U

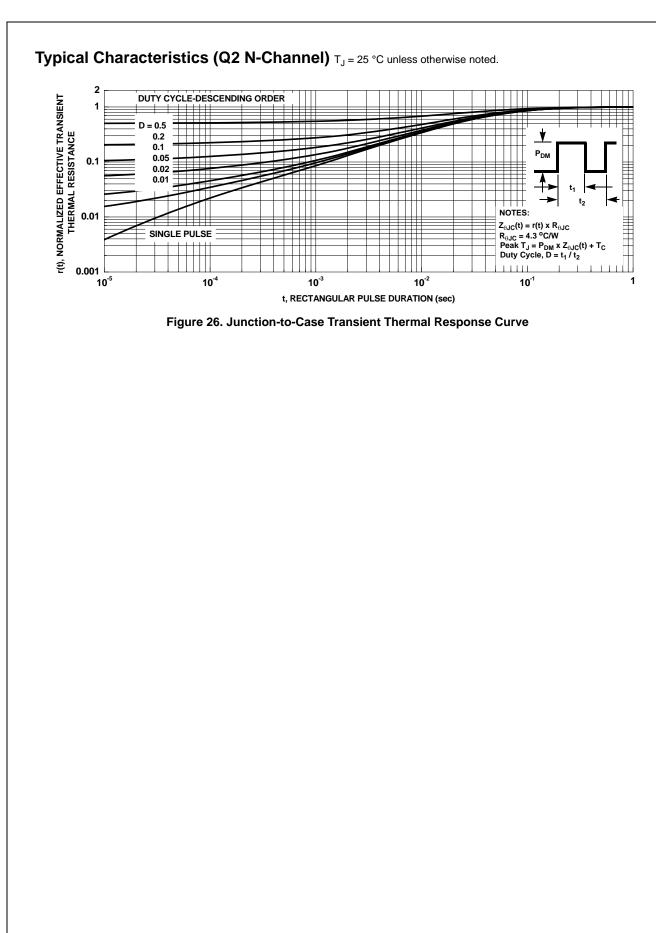

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-Sou	Irce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage		Q1 Q2		0.8 0.8	1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 17 A, di/dt = 100 A/μs	Q1 Q2		23 32	37 51	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 32 A, di/dt = 240 A/μs	Q1 Q2		8 40	16 64	nC

Notes:


 $1.R_{0,LA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material, $R_{0,CA}$ is determined by the user's board design.



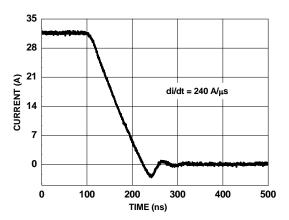
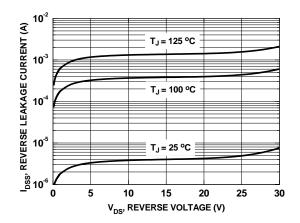
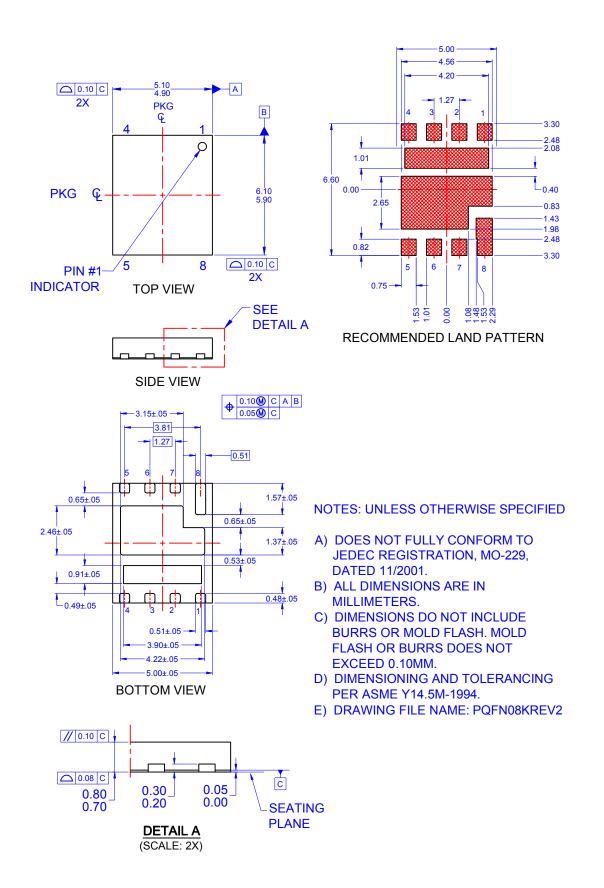


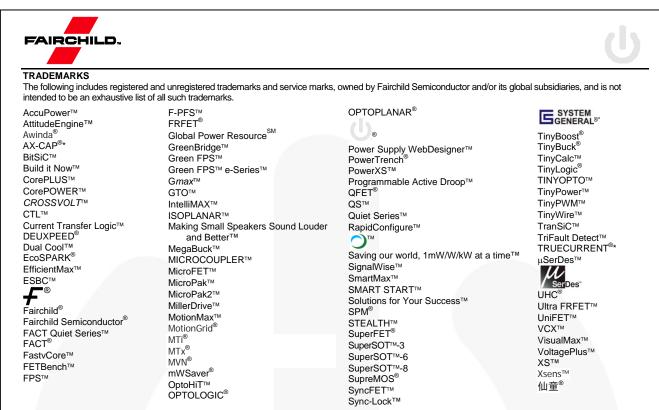


Typical Characteristics (continued)

SyncFET[™] Schottky Body Diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDPC5018SG.


Figure 27. FDPC5018SG SyncFET[™] Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDPC5018SG</u>