SEMICロNDUCTロR
FDS9933A

Dual P-Channel 2.5V Specified PowerTrench ${ }^{\text {TM }}$ MOSFET

General Description

These P-Channel 2.5 V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

Applications

- Load switch
- DC/DC converter
- Motor drives

Features

- $-3.8 \mathrm{~A},-20 \mathrm{~V} . \mathrm{R}_{\mathrm{DS}(\text { on })}=0.075 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$ $R_{\mathrm{DS}(\text { on })}=0.105 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$.
- Low gate charge (7 nC typical).
- Fast switching speed.
- High performance trench technology for extremely low $\mathrm{R}_{\mathrm{DS}(\text { on })}$.
- High power and current handling capability.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{N}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	FDS9933A	Units
$V_{\text {DSS }}$	Drain-Source Voltage	-20	V
$\mathrm{V}_{\mathrm{GSS}}$	Gate-Source Voltage	± 8	V
I_{D}	Drain Current - Continuous (Note 1a)	-3.8	A
	- Pulsed	-20	
P_{D}	Power Dissipation for Dual Operation	2.0	W
	Power Dissipation for Single Operation $\begin{array}{l}\text { (Note 1a) } \\ \text { (Note 1b) } \\ \text { (Note 1c) }\end{array}$	1.6	
		1.0	
		0.9	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {ӨJA }}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {ӨJc }}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS9933A	FDS9933A	$13^{\prime \prime}$	12 mm	2500 units

DMOS Electrical Characteristics $\quad T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

$\mathrm{BV}_{\mathrm{DSS}}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-20		V	
$\Delta \mathrm{B}, \mathrm{V}_{\text {DS }}$ $\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		-16		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{DSS}}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{GSSF}}$	Gate-Body Leakage, Forward	$\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			100	nA
$\mathrm{I}_{\mathrm{GSSR}}$	Gate-Body Leakage, Reverse	$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-100	nA

On Characteristics (Note 2)

$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4	-0.8	-1.5	V
$\Delta V_{G S(m)}$ $\Delta \mathrm{T}_{\mathrm{J}}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		2.5		$\mathrm{mV} / \circ^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-Source On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.8 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.8 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.3 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 0.058 \\ & 0.086 \\ & 0.084 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.075 \\ 0.12 \\ 0.105 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\mathrm{I}_{\text {(on) }}$	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$	-10			A
g_{Fs}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.8 \mathrm{~A}$		10		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	600	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		175	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		80	pF

Switching Characteristics (Note 2)

$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6.0 \Omega \end{aligned}$	6	12	ns
t_{r}	Turn-On Rise Time		9	18	ns
$\mathrm{t}_{\text {doff) }}$	Turn-Off Delay Time		31	50	ns
t_{f}	Turn-Off Fall Time		28	42	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.8 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V} \end{aligned}$	7	10	nC
Q_{gs}	Gate-Source Charge		1.3		nC
Q_{gd}	Gate-Drain Charge		2		nC

Drain-Source Diode Characteristics and Maximum Ratings

I_{S}	Maximum Continuous Drain-Source Diode Forward Current			-1.3	A	
$\mathrm{~V}_{\mathrm{SD}}$	Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.3 \mathrm{~A}$ (Note 2)		-0.75	-1.2	V

Notes:

1: $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design.

a) $78^{\circ} \mathrm{C} / \mathrm{W}$ when
mounted on a $0.5 \mathrm{in}^{2}$ pad of 2 oz . copper.

b) $125^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $0.02 \mathrm{in}^{2}$ pad of 2 oz. copper. pad of 2 oz. copper.

Scale 1: 1 on letter size paper
2: Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation withTemperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics (continued)

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c.
Transient themal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	POP ${ }^{\text {тм }}$	UHC' ${ }^{\text {² }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {M }}$	PowerTrench ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
FACT ${ }^{\text {тм }}$	QFET ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	
FAST ${ }^{\circledR}$	Quiet Series ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	SuperSOTT-3	
GTO $^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-6	
HiSeC ${ }^{\text {¹ }}$	SuperSOTT-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:
FDS9933A

