

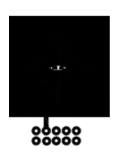
This Single P-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to optimize the $r_{DS(on)}@V_{GS} = -1.5$ V.

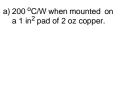
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-20	V	
V _{GS}	Gate to Source Voltage		±8	V	
ID	Drain Current -Continuous	(Note 1a)	-0.83	^	
	-Pulsed		-1.0	— A	
P _D	Power Dissipation	(Note 1a)	0.625	14/	
	Power Dissipation	(Note 1b)	0.446	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

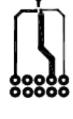
Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	200	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	280	C/VV

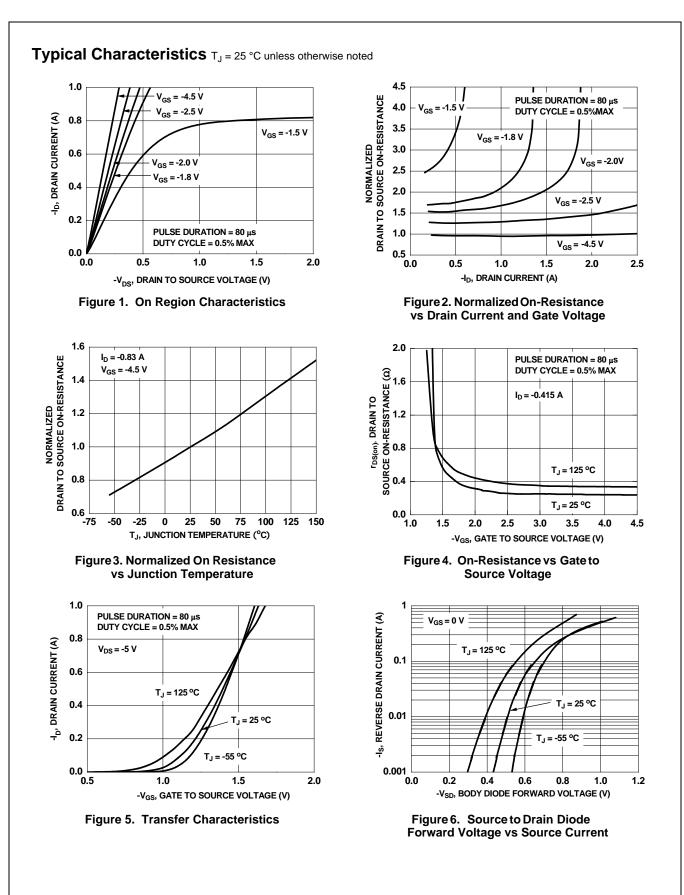

Package Marking and Ordering Information

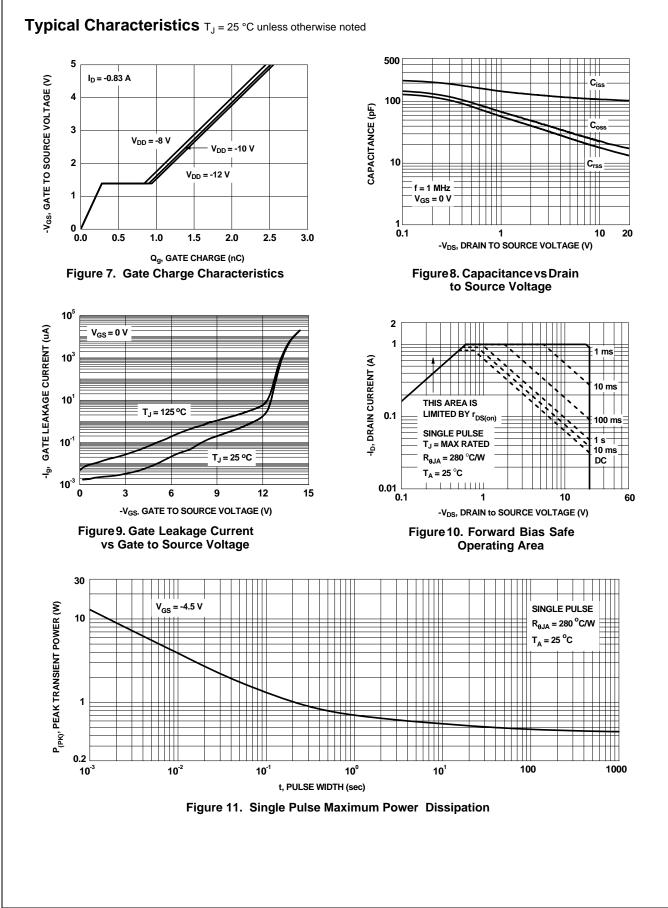

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
E	FDY102PZ	SC89-3	7 "	8 mm	3000 units

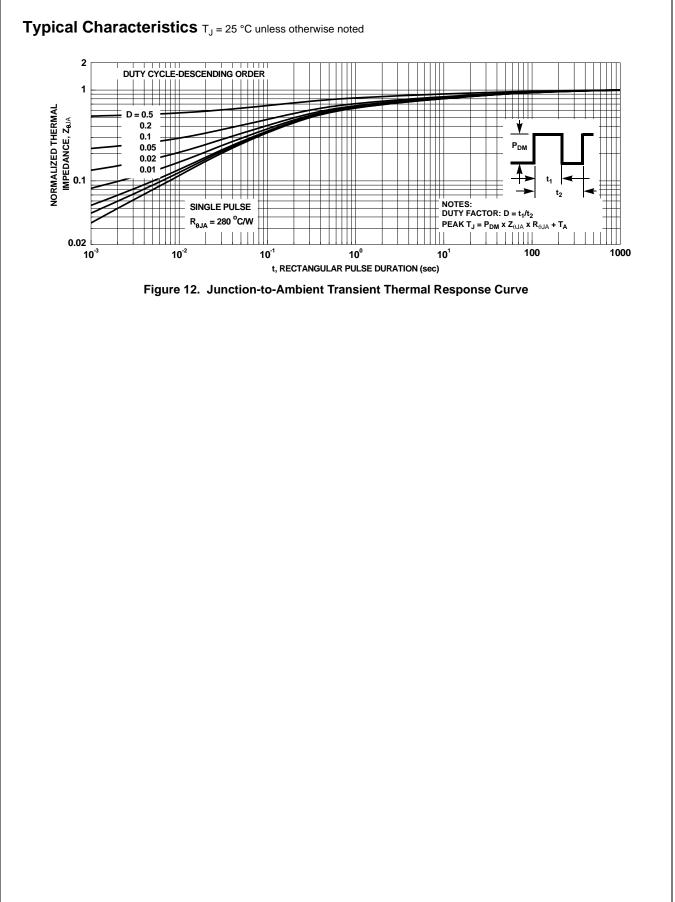
April 2014

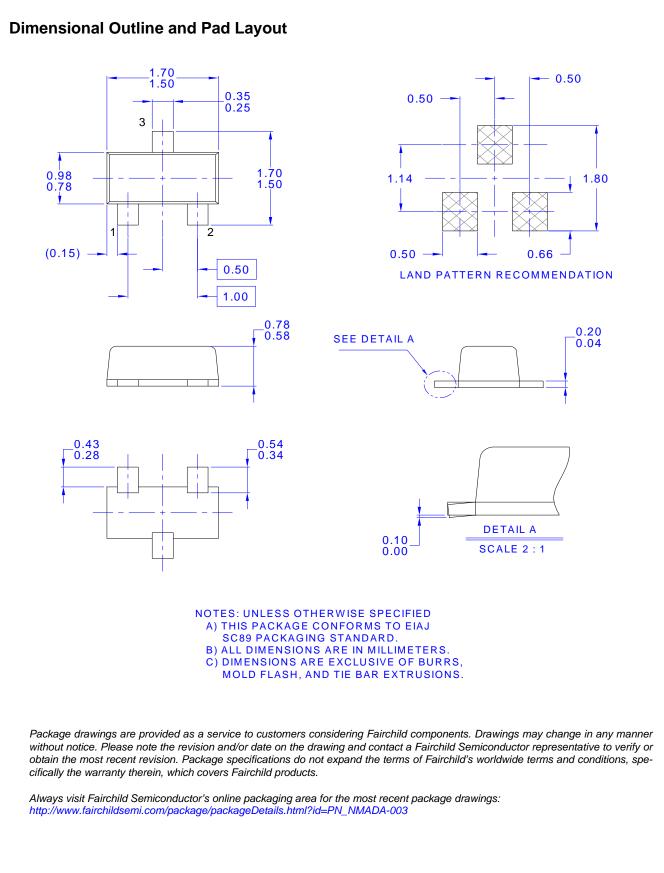

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-20			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		-11		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 V, V_{DS} = 0 V$			±10	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 5 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$		-	±0.5	μΑ	
On Chara	cteristics (Note 2)						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.7	-1.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		3		mV/°C	
	Static Drain to Source On-Resistance	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$		0.28	0.5		
		$V_{GS} = -2.5 \text{ V}, I_D = -0.70 \text{ A}$		0.36	0.7	- Ω	
(DO())		$V_{GS} = -1.8 \text{ V}, I_D = -0.43 \text{ A}$		0.47	1.2		
r _{DS(on)}		$V_{GS} = -1.5 \text{ V}, I_D = -0.36 \text{ A}$		0.62	1.8		
		V _{GS} = −4.5 V, I _D = −0.83 A, T _J =125 °C		0.39	0.85		
9 _{FS}	Forward Transconductance	$V_{DD} = -5 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$		2		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			100	135	pF	
C _{oss}	Output Capacitance	[→] V _{DS} = −10 V, V _{GS} = 0 V, →f = 1 MHz		23	35	pF	
C _{rss}	Reverse Transfer Capacitance			18	30	pF	
Switching	g Characteristics (Note 2)						
t _{d(on)}	Turn-On Delay Time			3.5	10	ns	
t _r	Rise Time	V _{DD} = -10 V, I _D = -0.83 A		2.9	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		23	37	ns	
	Fall Time			13	23	ns	
t _f				2.2	3.1	nC	
-	Total Gate Charge						
Q _g	Total Gate Charge Gate to Source Charge	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$		0.3		nC	
t _f Q _g Q _{gs} Q _{qd}	° ·	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.83 \text{ A}$ $V_{GS} = -4.5 \text{ V}$		0.3 0.6		nC nC	
Q _g Q _{gs} Q _{gd}	Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = -4.5 V$				-	
Q _g Q _{gs} Q _{gd} Drain-Sou	Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics and I	V _{GS} = -4.5 V Maximum Rating			-0.52	-	
Q _g Q _{gs} Q _{gd} Drain-Sou	Gate to Source Charge Gate to Drain "Miller" Charge	V _{GS} = -4.5 V Maximum Rating de Forward Current			-0.52	nC	
Q _g Q _{gs} Q _{gd}	Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics and I Maximum Continuous Drain-Source Dioc	V _{GS} = -4.5 V Maximum Rating de Forward Current		0.6		nC	

Notes: 1. R_{8JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JC} is guaranteed by design while R_{8JA} is determined by the user's board design.




Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


b) 280 °C/W when mounted on a minimum pad of 2 oz copper.



FDY102PZ Rev.B3

4

Rev. 168

7

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDY102PZ</u>