

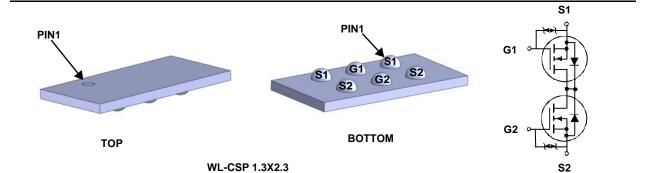
September 2014

FDZ1323NZ

Common Drain N-Channel 2.5 V PowerTrench[®] WL-CSP MOSFET

20 V, 10 A, 13 m Ω

Features


- Max $r_{S1S2(on)}$ = 13 m Ω at V_{GS} = 4.5 V, I_{S1S2} = 1 A
- Max r_{S1S2(on)} = 13 mΩ at V_{GS} = 3.8 V, I_{S1S2} = 1 A
- Max r_{S1S2(on)} = 16 mΩ at V_{GS} = 3.1 V, I_{S1S2} = 1 A
- Max r_{S1S2(on)} = 18 mΩ at V_{GS} = 2.5 V, I_{S1S2} = 1 A
- Occupies only 3 mm² of PCB area
- Ultra-thin package: less than 0.35 mm height when mounted to PCB
- High power and current handling capability
- HBM ESD protection level > 3.6 kV (Note 3)
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for Li-lon battery pack protection circuit and other ultra-portable applications. It features two common drain N-channel MOSFETs, which enables bidirectional current flow, on Fairchild's advanced PowerTrench[®] process with state of the art "low pitch" WLCSP packaging process, the FDZ1323NZ minimizes both PCB space and $r_{S1S2(on)}$. This advanced WLCSP MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, ultra-low profile packaging, low gate charge and low $r_{S1S2(on)}$.

Applications

- Battery management
- Load switch
- Battery protection

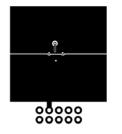
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{S1S2}	Source1 to Source2 Voltage			20	V	
V _{GS}	Gate to Source Voltage			±12	V	
	Source1 to Source2 Current -Continuous T	_A = 25°C	(Note 1a)	10		
IS1S2	-Pulsed			40	A	
D	Power Dissipation T	_A = 25°C	(Note 1a)	2	W	
P _D	Power Dissipation T ₄	_A = 25°C	(Note 1b)	0.5		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	62	°C/W]
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	257	C/VV	

Package Marking and Ordering Information

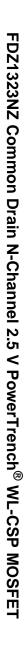

ſ	Device Marking	Device	Package	Reel Size	Tape Width	Quantity
	EC	FDZ1323NZ	WL-CSP 1.3X2.3	7 "	8 mm	5000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
I _{S1S2}	Zero Gate Voltage Source1 to Source2 Current	$V_{S1S2} = 16 V, V_{GS} = 0 V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{S1S2} = 0 \text{ V}$			±10	μA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{S1S2} , I _{S1S2} = 250 μA	0.4	0.9	1.2	V
00()		$V_{GS} = 4.5 \text{ V}, \text{ I}_{S1S2} = 1 \text{ A}$	4.5	9.7	13	mΩ
	Static Source1 to Source2 On Resistance	$V_{GS} = 3.8 \text{ V}, \text{ I}_{S1S2} = 1 \text{ A}$	5.5	10	13	
r _{S1S2(on)}		$V_{GS} = 3.1 \text{ V}, I_{S1S2} = 1 \text{ A}$	7	11	16	
(-)		V _{GS} = 2.5 V, I _{S1S2} = 1 A	8	13	18	
		$V_{GS} = 4.5 \text{ V}, I_{S1S2} = 1 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$		13	20	
9 _{FS}	Forward Transconductance	V _{S1S2} = 5 V, I _{S1S2} = 1 A		9		S
Dynamic C _{iss}	Characteristics			1545	2055	pF
	Output Capacitance	V _{S1S2} = 10 V, V _{GS} = 0 V,		269	405	pr pF
C _{oss} C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		209	380	pF
				202	000	рі
Switching	y Characteristics			1	[1
t _{d(on)}	Turn-On Delay Time	-		12	22	ns
t _r	Rise Time	V _{S1S2} = 10 V, I _{S1S2} = 1 A,		13	23	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		34	54	ns
t _f	Fall Time			13	23	ns
Q _g	Total Gate Charge	V _{S1S2} = 10 V, I _{S1S2} = 1 A,		17	24	nC
Q _{gs}	Gate to Source1 Gate Charge	$V_{S1S2} = 10$ V, $I_{S1S2} = 1$ A, $V_{G1S1} = 4.5$ V, $V_{G2S2} = 0$ V		1.9		nC
Q _{gd}	Gate to Source2 "Miller" Charge	0101		5.4		nC

I _{fss}	Maximum Continuous Source1 to Source2 Diode Forward Current				1	А
V.	Source1 to Source2 Diode Forward	V _{G1S1} = 0 V, V _{G2S2} = 4.5 V,		0.6	12	V
v _{fss}	Voltage	I _{fss} = 1 A (Not	e 2)	0.0	1.2	v

Notes:

R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

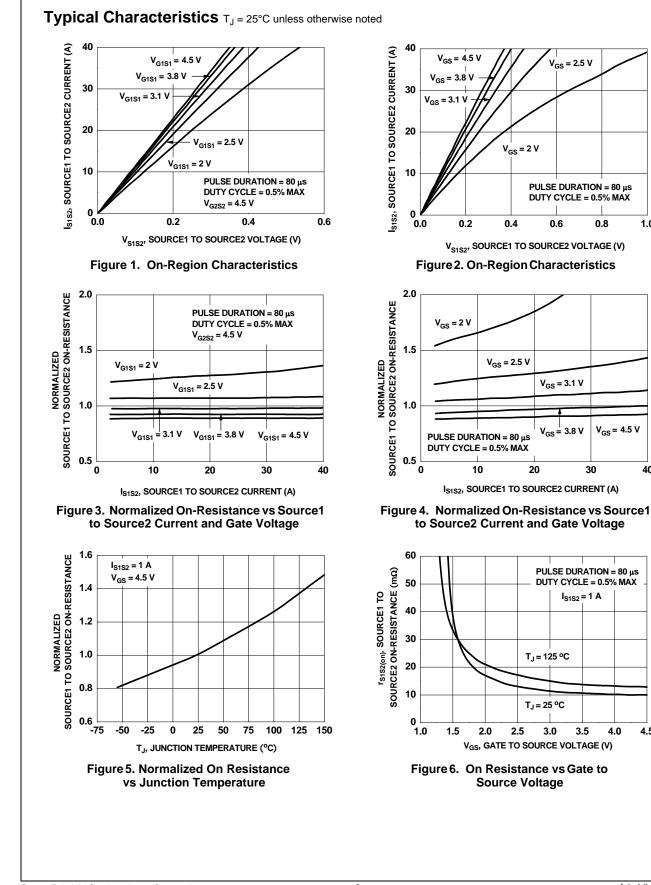


2. Pulse Test: Pulse Width < 300 us, Duty cycle < 2.0%.

a. 62 °C/W when mounted on a 1 in² pad of 2 oz copper.

3. The diode connected between the gate and source serves only protection against ESD. No gate overvoltage rating is implied.

b. 257 °C/W when mounted on a minimum pad of 2 oz copper.

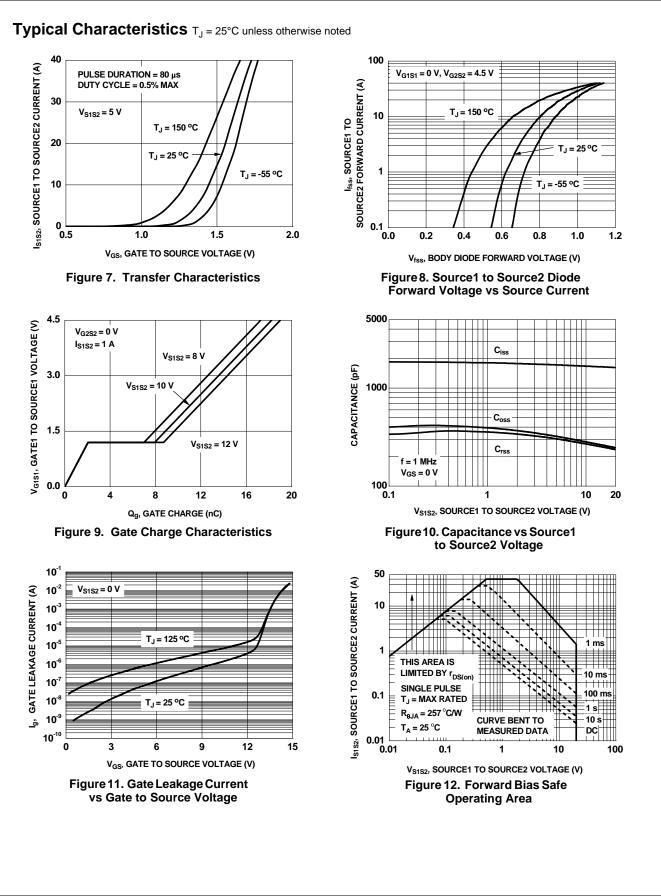

0.8

V_{GS} = 4.5 V

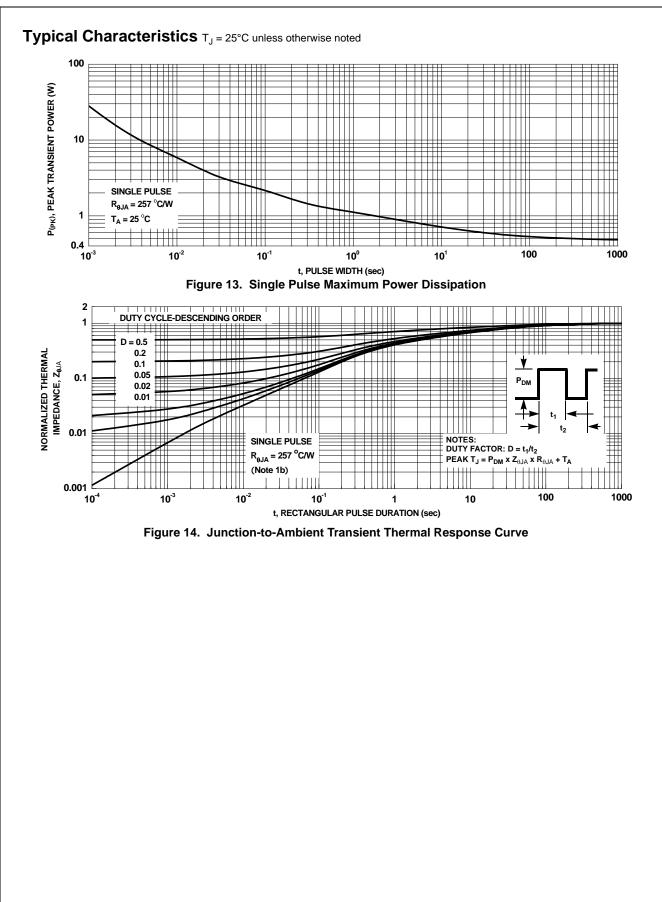
30

40

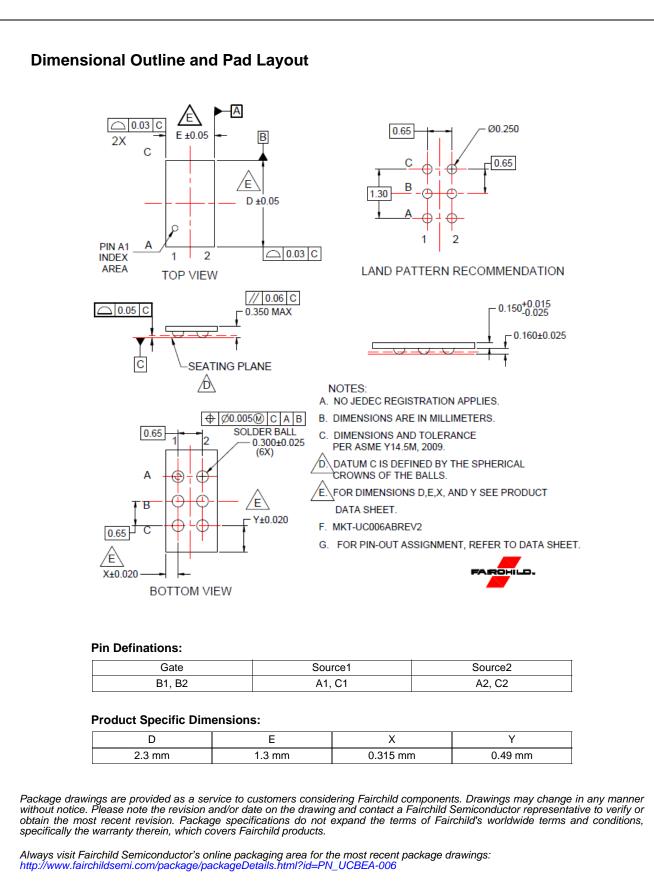
1.0


www.fairchildsemi.com

4.0


4.5

©2013 Fairchild Semiconductor Corporation FDZ1323NZ Rev.C7


3

©2013 Fairchild Semiconductor Corporation FDZ1323NZ Rev.C7 FDZ1323NZ Common Drain N-Channel 2.5 V PowerTrench[®] WL-CSP MOSFET

FDZ1323NZ Common Drain N-Channel 2.5 V PowerTrench[®] WL-CSP MOSFET

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDZ1323NZ</u>