

June 2015

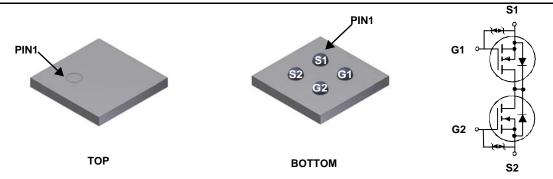
FDZ1416NZ

Common Drain N-Channel 2.5 V PowerTrench® WL-CSP MOSFET

24 V, 7 A, 23 mΩ

Features

- Max $r_{S1S2(on)} = 23 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_{S1S2} = 1 \text{ A}$
- Max $r_{S1S2(on)} = 25 \text{ m}\Omega$ at $V_{GS} = 4 \text{ V}$, $I_{S1S2} = 1 \text{ A}$
- Max $r_{S1S2(on)}$ = 28 m Ω at V_{GS} = 3.1 V, I_{S1S2} = 1 A
- Max $r_{S1S2(on)} = 33 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_{S1S2} = 1 \text{ A}$
- Occupies only 2.2 mm² of PCB area
- Ultra-thin package: less than 0.35 mm height when mounted to PCB
- High power and current handling capability
- HBM ESD protection level > 3.2 kV (Note 3)
- RoHS Compliant



General Description

This device is designed specifically as a single package solution for Li-lon battery pack protection circuit and other ultra-portable applications. It features two common drain N-channel MOSFETs, which enables bidirectional current flow, on Fairchild's advanced PowerTrench® process with state of the art "low pitch" WLCSP packaging process, the FDZ1416NZ minimizes both PCB space and $r_{\rm S1S2(on)}.$ This advanced WLCSP MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, ultra-low profile packaging, low gate charge and low $r_{\rm S1S2(on)}.$

Applications

- Battery management
- Load switch
- Battery protection

WL-CSP 1.4X1.6

MOSFET Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Paramete		Ratings	Units		
V _{S1S2}	Source1 to Source2 Voltage			24	V	
V _{GS}	Gate to Source Voltage			±12	V	
	Source1 to Source2 Current -Continuous	T _A = 25°C	(Note 1a)	7	Δ.	
I _{S1S2}	-Pulsed			30	A	
D	Power Dissipation	T _A = 25°C	(Note 1a)	1.7	10/	
P_{D}	Power Dissipation	T _A = 25°C	(Note 1b)	0.5	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	74	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	230	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
EN	FDZ1416NZ	WL-CSP 1.4X1.6	7 "	8 mm	5000 units

Electrical Characteristics T_J = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Characteristics						
I _{S1S2}	Zero Gate Voltage Source1 to Source2 Current	V _{S1S2} = 19 V, V _{GS} = 0 V			1	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±12 V, V _{S1S2} = 0 V			±10	μА

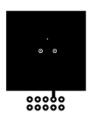
On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{S1S2}, I_{S1S2} = 250 \mu A$	0.4	0.9	1.3	V	
r _{S1S2(on)}		V _{GS} = 4.5 V, I _{S1S2} = 1 A	9	16	23		
		V _{GS} = 4 V, I _{S1S2} = 1 A	10	17	25		
	Static Source1 to Source2 On Resistance	V _{GS} = 3.1 V, I _{S1S2} = 1 A	11	19	28	mΩ	
		V _{GS} = 2.5 V, I _{S1S2} = 1 A	12	22	33		
		V _{GS} = 4.5 V, I _{S1S2} = 1 A,T _J = 125 °C		24	36		
9 _{FS}	Forward Transconductance	V _{S1S2} = 5 V, I _{S1S2} = 1 A		4.5		S	

Dynamic Characteristics

C _{iss}	Input Capacitance	V 42.V. V 0.V	1140	1515	pF
C _{oss}	Output Capacitance	V _{S1S2} = 12 V, V _{GS} = 0 V, f = 1 MHz	136	220	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 101112	129	205	pF

Switching Characteristics


t _{d(on)}	Turn-On Delay Time		9.5	19	ns
t _r	Rise Time	V _{S1S2} = 12 V, I _{S1S2} = 1 A,	12	22	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$	37	59	ns
t _f	Fall Time		16	33	ns
Q_q	Total Gate Charge		12	17	nC
Q_{gs}	Gate to Source1 Gate Charge	$V_{S1S2} = 12 \text{ V}, I_{S1S2} = 1 \text{ A},$ $V_{G1S1} = 4.5 \text{ V}, V_{G2S2} = 0 \text{ V}$	1.6		nC
Q_{gd}	Gate to Source2 "Miller" Charge	v _{G1S1} = 4.3 v, v _{G2S2} = 0 v	3.7		nC

Source1 to Source2 Diode Characteristics


I _{fss}	Maximum Continuous Source1 to Source2 Diode Forward Current		urrent		1	Α
V _{fss}	Source1 to Source2 Diode Forward Voltage	$V_{G1S1} = 0 \text{ V, } V_{G2}$ $I_{fss} = 1 \text{ A}$	S2 = 4.5 V, (Note 2)	0.7	1.2	V

Notes

1. R_{0,1A} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,1C} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 74 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 230 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 us, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics T_J = 25°C unless otherwise noted

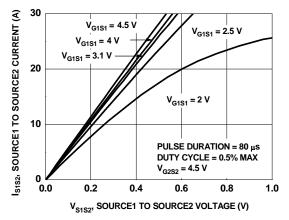


Figure 1. On-Region Characteristics

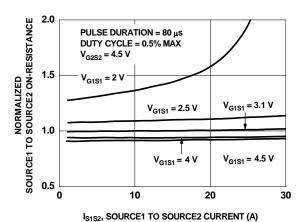


Figure 3. Normalized On-Resistance vs Source1 to Source2 Current and Gate Voltage

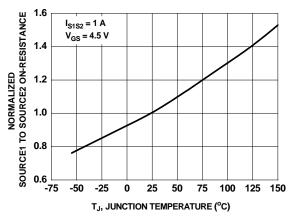
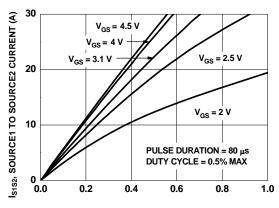



Figure 5. Normalized On Resistance vs Junction Temperature

V_{S1S2}, SOURCE1 TO SOURCE2 VOLTAGE (V)

Figure 2. On-Region Characteristics

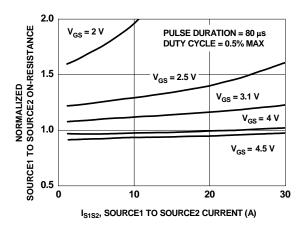


Figure 4. Normalized On-Resistance vs Source1 to Source2 Current and Gate Voltage

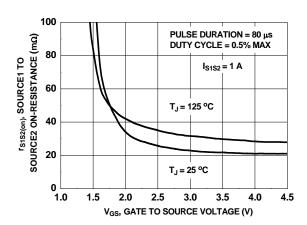


Figure 6. On Resistance vs Gate to Source Voltage

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

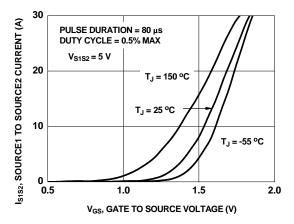


Figure 7. Transfer Characteristics

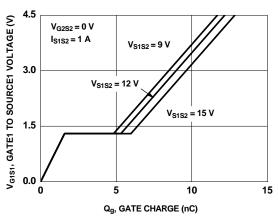


Figure 9. Gate Charge Characteristics

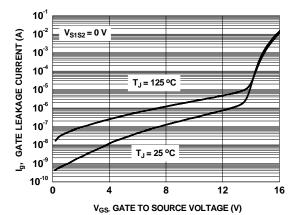
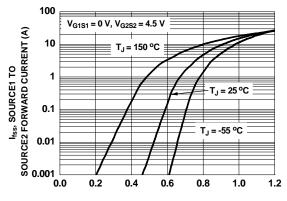
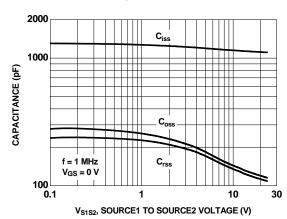
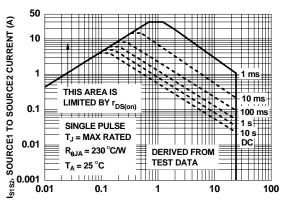
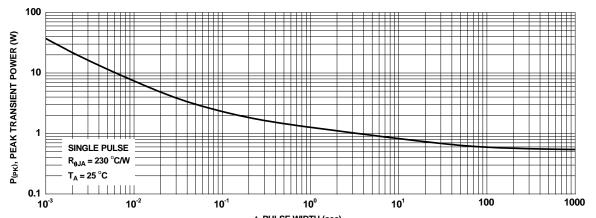



Figure 11. Gate Leakage Current vs Gate to Source Voltage

V_{fss}, BODY DIODE FORWARD VOLTAGE (V)

Figure 8. Source1 to Source2 Diode Forward Voltage vs Source Current


Figure 10. Capacitance vs Source1 to Source2 Voltage

V_{S1S2}, SOURCE1 TO SOURCE2 VOLTAGE (V)

Figure 12. Forward Bias Safe Operating Area

Typical Characteristics T_J = 25°C unless otherwise noted

t, PULSE WIDTH (sec)
Figure 13. Single Pulse Maximum Power Dissipation

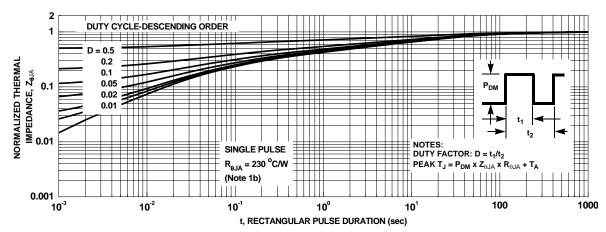
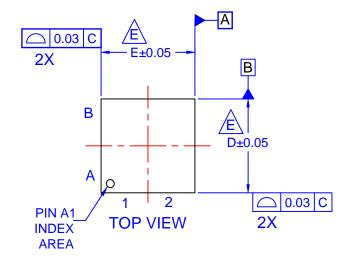
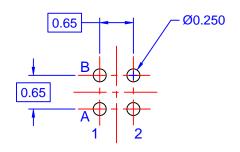
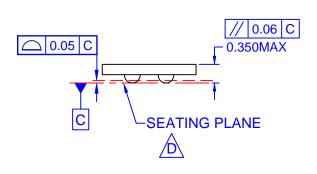


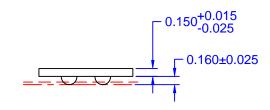
Figure 14. Junction-to-Ambient Transient Thermal Response Curve


The following information applies to the WL-CSP package dimensions on the next page:


Pin Definitions:

Pin Name	G1	G2	S1	S2
Position	A2	B2	A1	B1


Product Specific Dimensions:


D	E	X	Y
1.4 mm	1.6 mm	0.475 mm	0.375 mm

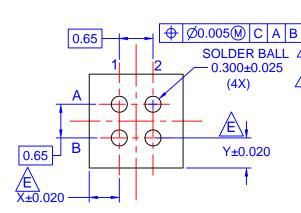
LAND PATTERN RECOMMENDATION

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE

PER ASME Y14.5M, 1994.

DATUM C IS DEFINED BY THE SPHERICAL


CROWNS OF THE BALLS.

FOR DIMENSIONS D,E,X AND Y SEE

PRODUCT DATA SHEET.

F. FOR PIN-OUT ASSIGNMENT, REFER TO DATA SHEET.

G. DRAWING NAME: MKT-UC004AJREV2.

BOTTOM VIEW

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®] AX-CAP®*

GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Fairchild Semiconductor®

MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™ OFFT

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™

TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* սSerDes™

UHC Ultra FRFET™

UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM. Xsens™ 仙童®

ESBC™

-®

Fairchild®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 177

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDZ1416NZ