

Is Now Part of

ON Semiconductor®

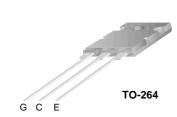
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FGL40N120AN 1200V NPT IGBT

Features

- High speed switching
- Low saturation voltage : V_{CE(sat)} = 2.6 V @ I_C = 40A
- High input impedance


Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter		FGL40N120AN	Units	
V _{CES}	Collector-Emitter Voltage		1200	V	
V _{GES}	Gate-Emitter Voltage		±25	V	
I _C	Collector Current	@T _C = 25°C	64	A	
	Collector Current	@T _C = 100°C	40	A	
I _{CM(1)}	Pulsed Collector Current		160	A	
P _D	Maximum Power Dissipation	@T _C = 25°C	500	W	
	Maximum Power Dissipation	@T _C = 100°C	200	W	
SCWT	Short Circuit Withstand Time, $V_{CE} = 600V, V_{GE} = 15V, T_{C} = 125^{\circ}C$		10	μs	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{STG}	Storage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 seconds		300	°C	

Notes:

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction-to-Case		0.25	°C/W
R _{0JA} Thermal Resistance, Junction-to-Ambient			25	°C/W

		Device Pacl		je Reel Size	Тар	Tape Width		Quantity 25	
		TO-264	-						
Electrica	al Char	acteristics of th	e IGB1	T _C = 25°C unless otherwise r	oted				
Symbol		Parameter		Conditions	Min.	Тур.	Max.	Units	
Off Charact	eristics								
BV _{CES}	Collector	-Emitter Breakdown Volta	ge V _{GI}	₌ = 0V, I _C = 1mA	1200			V	
BV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage		own	₌ = 0V, I _C = 1mA		0.6		V/°C	
I _{CES}	Collector	Cut-Off Current	V _{CE}	$_{\rm E}$ = V _{CES} , V _{GE} = 0V			1	mA	
I _{GES}	G-E Leal	kage Current	V _{GI}	$_{\rm E}$ = V _{GES} , V _{CE} = 0V			±250	nA	
On Charact	eristice		·						
V _{GE(th)}		eshold Voltage	I _C =	= 250µA, V _{CE} = V _{GE}	3.5	5.5	7.5	V	
(/)		-	-	= 40A, V _{GE} = 15V		2.6	3.2	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage			= 40A, V _{GE} = 15V, = 125°C		2.9		V	
			I _C =	= 64A, V _{GE} = 15V		3.15		V	
Dynamic Cl						2200			
C _{ies}	Input Ca		VCE	_E = 30V, V _{GE} = 0V		3200		pF	
C _{oes}	Output Capacitance Reverse Transfer Capacitance			1MHz		370 125		pF pF	
C _{res}	Reverse	Transier Capacitance				125		μ	
Switching C	1					45			
t _{d(on)}		Delay Time				15		ns	
t _r	Rise Tim	e Delay Time				20 110		ns	
t _{d(off)}	Fall Time			_C = 600V, I _C = 40A, = 5Ω, V _{GE} = 15V,		40	80	ns ns	
t _f E _{on}		Switching Loss		uctive Load, $T_C = 25^{\circ}C$		2.3	3.45	mJ	
E _{off}		Switching Loss				1.1	1.65	mJ	
E _{ts}		tching Loss				3.4	5.1	mJ	
t _{d(on)}	Turn-On	Delay Time				20		ns	
t _r	Rise Tim	-				25		ns	
t _{d(off)}	Turn-Off	Delay Time	Ver	_c = 600V, I _C = 40A,		120		ns	
t _f	Fall Time	•	R _G	$R_{G} = 5\Omega, V_{GE} = 15V,$		45		ns	
Eon	Turn-On	Switching Loss	Ind	uctive Load, T _C = 125°C		2.5		mJ	
E _{off}	Turn-Off	Switching Loss				1.8		mJ	
E _{ts}	Total Swi	tching Loss				4.3		mJ	
Qg	Total Gat	e charge		600)/ 1 404		220	330	nC	
Q _{ge}	Gate-Em	itter Charge		₌ = 600V, I _C = 40A, ₌ = 15V		25	38	nC	
Q _{gc}	Gate-Col	lector Charge		-		130	195	nC	

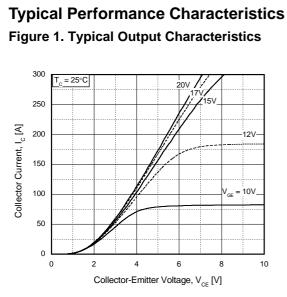


Figure 3. Saturation Voltage vs. Case Temperature at Variant Current Level

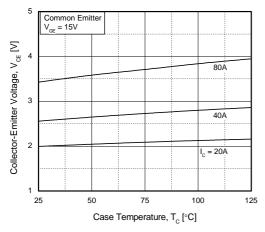


Figure 5. Saturation Voltage vs. V_{GE}

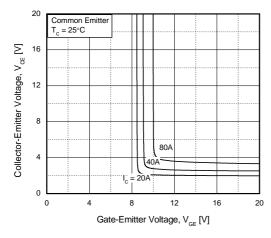


Figure 2. Typical Saturation Voltage Characteristics

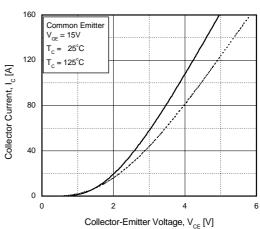
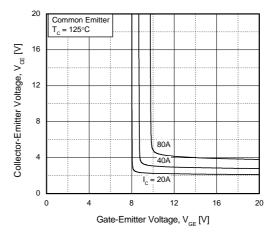
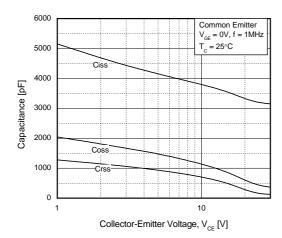



Figure 4. Load Current vs. Frequency


Figure 6. Saturation Voltage vs. V_{GE}

FGL40N120AN 1200V NPT IGBT

Typical Performance Characteristics (Continued)

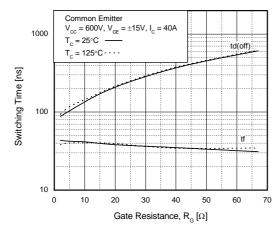


Figure 11. Turn-On Characteristics vs. Collector Current

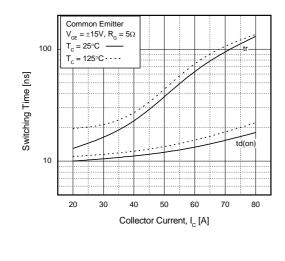


Figure 8. Turn-On Characteristics vs. Gate Resistance

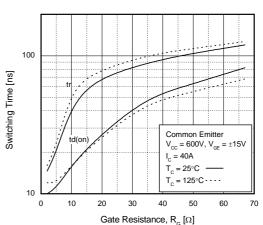


Figure 10. Switching Loss vs. Gate Resistance

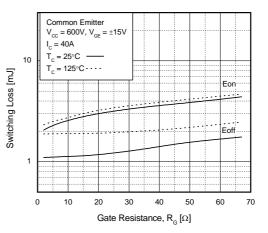
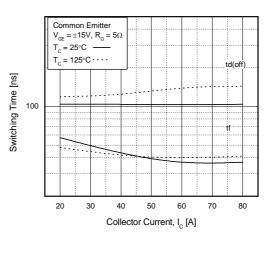
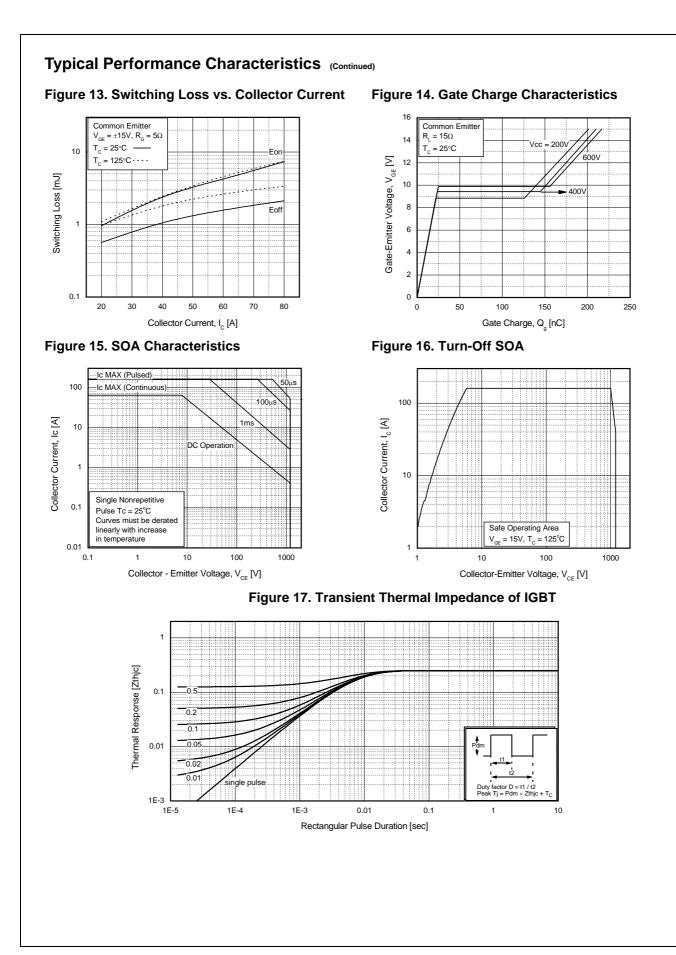
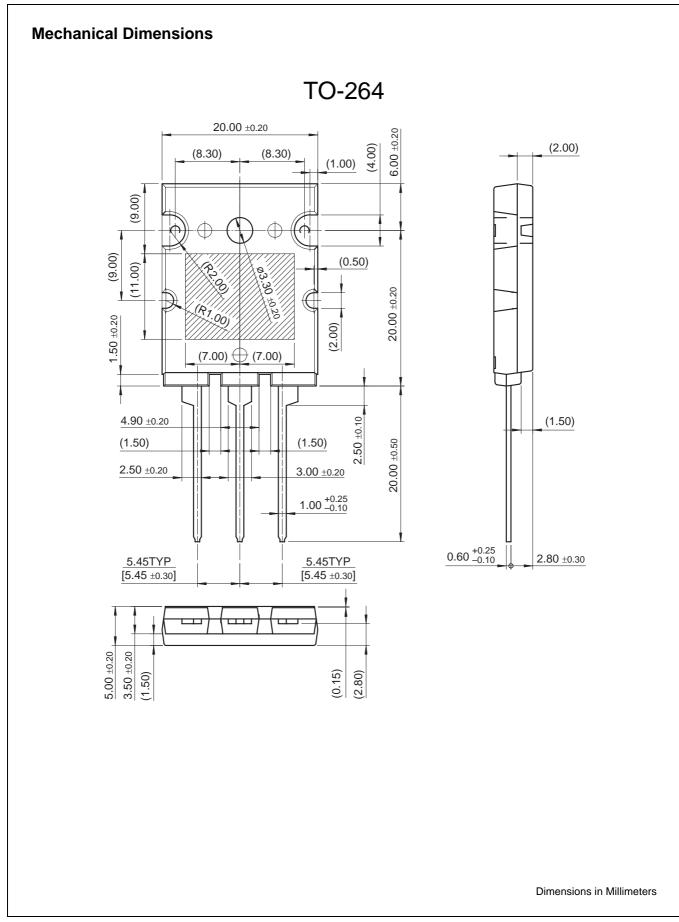





Figure 12. Turn-Off Characteristics vs. Collector Current

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FPS™ FRFET® Global Power Resource[™] Green FPS™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ **OPTOLOGIC**[®] **OPTOPLANAR[®]** PDP-SPM™ Power220[®] Power247[®]

Green FPS™ e-Series™

POWEREDGE[®] Power-SPM[™] PowerTrench® Programmable Active Droop™ **QFET**[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6

SuperSOT[™]-8 . SyncFET™ The Power Franchise® TinvBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinvPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 129

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGL40N120ANTU