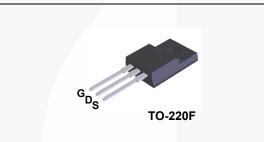
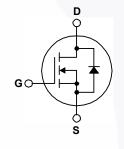


SEMICONDUCTOR®

FQPF630


N-Channel QFET[®] MOSFET 200 V, 6.3 A, 400 m Ω


Description

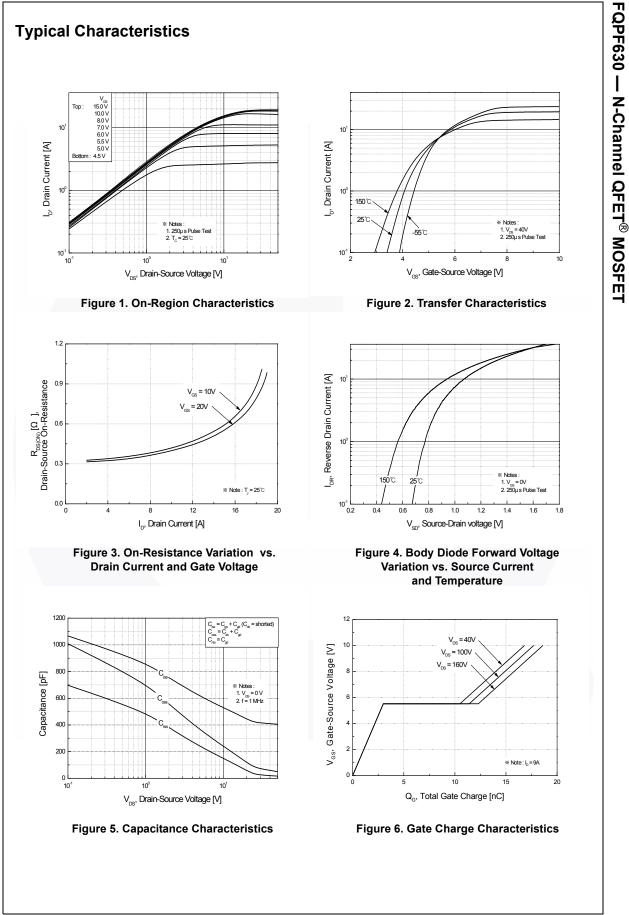
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features

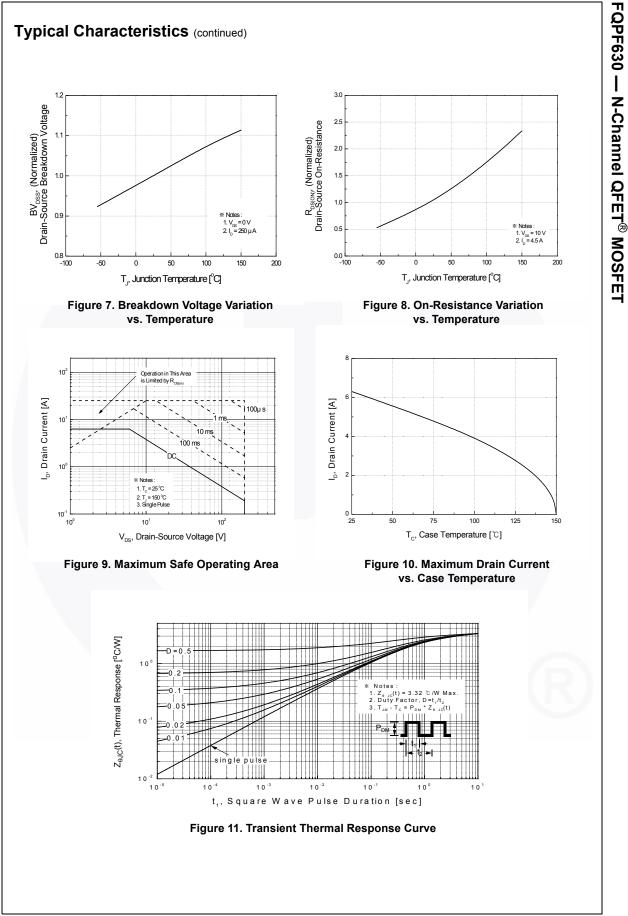
- 6.3 A, 200 V, $R_{DS(on)}$ = 400 m Ω (Max.) @ V_{GS} = 10 V, I_D = 3.15 A
- Low Gate Charge (Typ. 19 nC)
- Low Crss (Typ. 35 pF)
- 100% Avalanche Tested

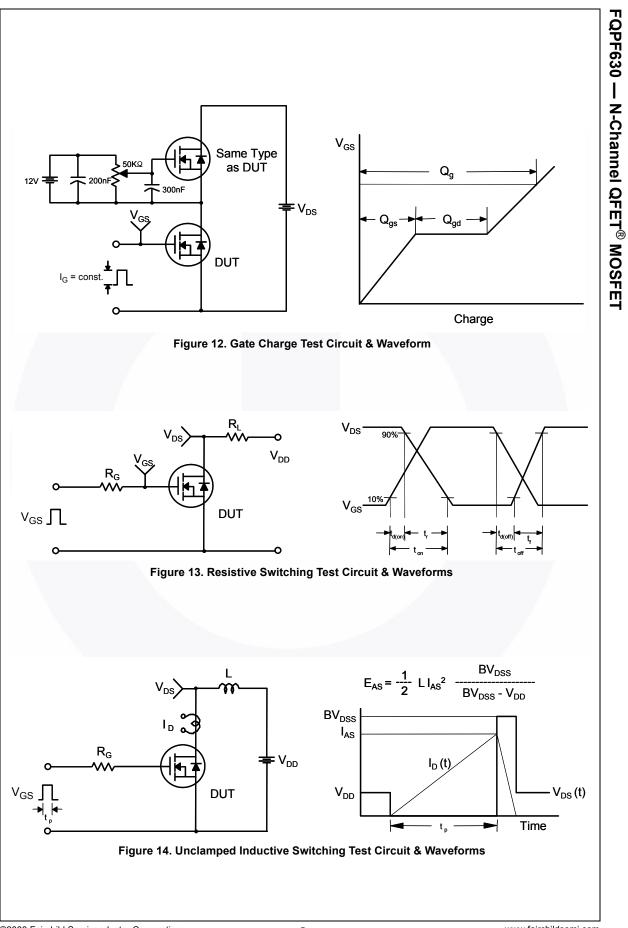
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

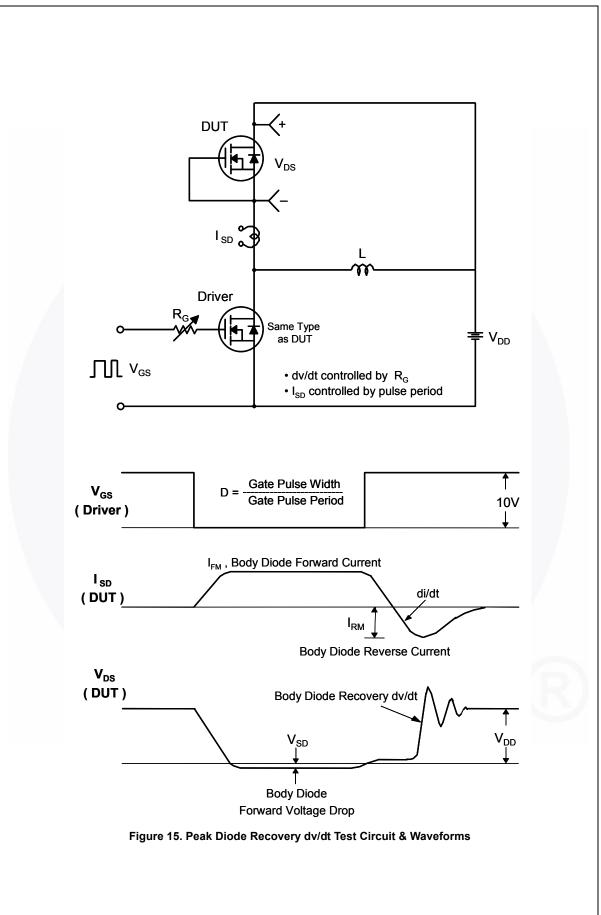
Symbol	Parameter	FQPF630	Unit
V _{DSS}	Drain-Source Voltage	200	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)	6.3	А
	- Continuous (T _C = 100°C)	4.0	Α
I _{DM}	Drain Current - Pulsed (Note 1)	25.2	Α
V _{GSS}	Gate-Source Voltage	± 25	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	164	mJ
I _{AR}	Avalanche Current (Note 1)	6.3	А
E _{AR}	Repetitive Avalanche Energy (Note 1)	3.8	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5.5	V/ns
PD	Power Dissipation $(T_C = 25^{\circ}C)$	38	W
	- Derate Above 25°C	0.30	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds	300	°C

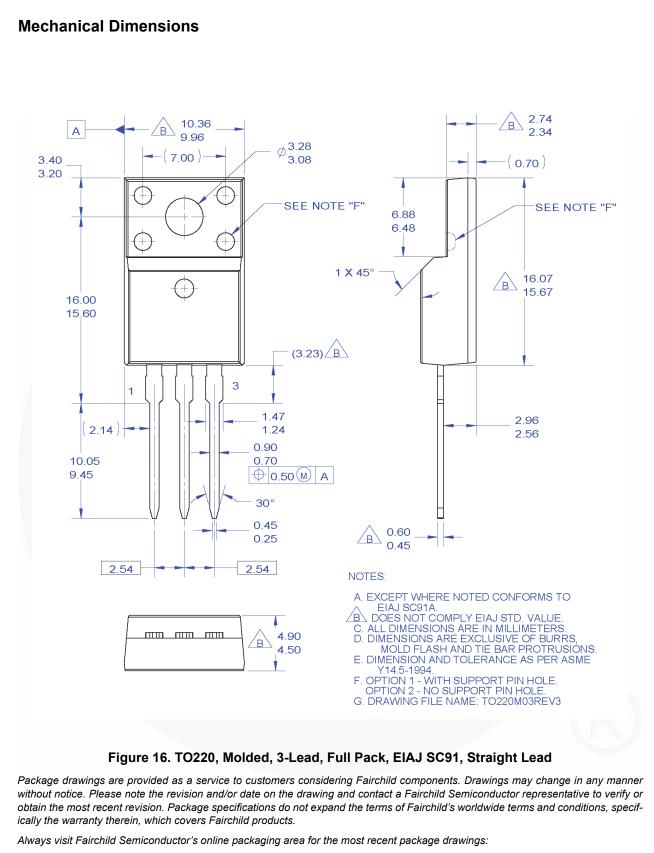

Thermal Characteristics

Symbol	Symbol Parameter		Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	3.32	°C/W	
R _{0JA} Thermal Resistance, Junction-to-Ambient, Max.		62.5	C/W	


November 2013 (R) November 2013


		Package	Packing Method R	Reel Size	Ta	Tape Width		Quantity	
		TO-220F	Tube N/A		N/A		50 units		
ectri	cal Cl	naracteristics	T _C = 25°C	unless otherwise noted.					
Symbol		Parameter		Test Condit	ions	Min.	Тур.	Max.	Unit
Off Cha	ractor	ictics							
BV _{DSS}	1	Source Breakdown Vo	Itane	V _{GS} = 0 V, I _D = 250 µ	IA	200			V
ABV _{DSS}			-			200			
ΔT_{J}	Breakdown Voltage Temperature Coefficient		ature	I_D = 250 μ A, Referenced to 25°C			0.20		V/°C
DSS	Zero Gate Voltage Drain Current		ront	V _{DS} = 200 V, V _{GS} = 0 V				1	μA
			rent	V _{DS} = 160 V, T _C = 125°C				10	μA
GSSF	Gate-E	Body Leakage Current	, Forward	V _{GS} = 25 V, V _{DS} = 0 V				100	nA
GSSR	Gate-E	Body Leakage Current	, Reverse	$V_{GS} = -25 V, V_{DS} = 0 V$				-100	nA
On Cha	ractor	istics							
V _{GS(th)}	aracteristics Gate Threshold Voltage			V _{DS} = V _{GS} , I _D = 250 μA		2.0		4.0	V
R _{DS(on)}		Static Drain-Source				2.0		-	-
20(01)	On-Resistance		V _{GS} = 10 V, I _D = 3.15 A			0.34	0.4	Ω	
9 _{FS}	Forward Transconductance			V _{DS} = 40 V, I _D = 3.15 A			4.2		S
Dunam	ic Cha	racteristics							
C _{iss}		Capacitance		N 05 Y Y 0	\ /		420	550	pF
C _{oss}				$V_{\rm DS} = 25 \text{V}, \text{V}_{\rm GS} = 0 \text{V},$			85	110	pF
C _{rss}	Output Capacitance Reverse Transfer Capacitance		ce	f = 1.0 MHz			35	45	pF
133								-	
Switch	ing Ch	aracteristics)				
d(on)	Turn-C	on Delay Time		V _{DD} = 100 V, I _D = 9 Å	A. '		8	30	ns
r	Turn-C	on Rise Time		$R_G = 25 \Omega$	-		75	160	ns
d(off)	Turn-C	off Delay Time		0	a		47	110	ns
f	Turn-C	off Fall Time			(Note 4)		64	140	ns
ე ^g	Total C	ate Charge		V_{DS} = 160 V, I_{D} = 9 A	۹,		19	25	nC
ସୁ _{gs}	Gate-S	Source Charge		V _{GS} = 10 V	-		3		nC
ጋ _{gd}	Gate-E	Drain Charge			(Note 4)		9.5		nC
Drain S		Diode Characte	riation on	d Maximum Dati	200				
s					iiys			6.3	Α
S SM	Maximum Continuous Drain-Source Dic Maximum Pulsed Drain-Source Diode F						25.2	A	
S™ V _{SD}	Drain-Source Diode Forward Voltage		1	$V_{GS} = 0 V, I_S = 6.3 A$				1.5	V
rr m		se Recovery Time		$V_{GS} = 0 V, I_S = 0.3 A$ $V_{GS} = 0 V, I_S = 9 A,$			150		ns
ີ ຊ _{rr}		se Recovery Charge		$dI_{\rm F}$ / dt = 100 A/µs	-		0.68		μC


3. $I_{SD} \le 9$ A, di/dt ≤ 300 A/µs, $V_{DD} \le BV_{DSS}$, starting $T_J = 25^{\circ}$ C. 4. Essentially independent of operating temperature. FQPF630 — N-Channel QFET[®] MOSFET



©2000 Fairchild Semiconductor Corporation FQPF630 Rev. C1

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003

FQPF630 — N-Channel QFET[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Acc	cuPower™	F-PFS™	-/1>
AX-	-CAP [®] *	FRFET®	®
	SiC™	Global Power Resource SM	PowerTrench®
	ld it Now™	GreenBridge™	PowerXS™
	rePLUS™	Green FPS™	Programmable Active
	rePOWER™	Green FPS™ e-Series™	QFET®
	OSSVOLT™	Gmax™	QS™
CT		GTO™	Quiet Series™
	- rent Transfer Logic™	IntelliMAX™	RapidConfigure [™]
DE	UXPEED®	ISOPLANAR™	TM State
	al Cool™	Marking Small Speakers Sound Louder	
Eco	SPARK®	and Better™	Saving our world, 1m
Effi	centMax™	MegaBuck™	SignalWise™
ES	BC™	MIČROCOUPLER™	SmartMax™
-	R	MicroFET™	SMART START™
-	•	MicroPak™	Solutions for Your Su
Fai	rchild [®]	MicroPak2™	SPM [®]
	rchild Semiconductor [®]	MillerDrive™	STEALTH™
	CT Quiet Series™	MotionMax™	SuperFET®
FA	CT [®]	mWSaver®	SuperSOT™-3
FA	ST®	OptoHiT™	SuperSOT™-6
	stvCore™	OPTOLOGIC®	SuperSOT™-8
	TBench™	OPTOPLANAR [®]	SupreMOS [®]
FP			SyncFET™
1.1.1			-,

ESYSTEM^{®*} GENERAL TinyBoost e Droop™ TinyBuck® TinyCalc™ TinvLogic® TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ nW/W/kW at a time™ TranSiC™ µSerDes™ uccess™ UHC®

XS™

TriFault Detect™ TRUECURRENT®* Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: