

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

December 2013

FSB44104A

Motion SPM® 45 LV Series

Features

- UL Certified No.E209204 (UL1557)
- 40 V, R_{DS(ON)} = 4.1 mΩ(Max.) 3-Phase MOSFET Inverter Module with Gate Drivers and Protection
- Low Thermal Resistance Using Ceramic Substrate
- Three Separate Open-Emitter Pins from Low-Side MOSFETs for Three-Leg Current Sensing.
- Single-Grounded Power Supply for Built-in HVIC.
- Isolation Rating: 800 V_{rms} / min.

Applications

• Motion Control - Home Appliance / Industrial Motor.

General Description

FSB44104A is a Motion SPM[®] 45 LV module that Fairchild developed based on low-loss PowerTrench[®] MOSFET technology as a compact motor drive inverter solution for small power applications supplied by low voltage battery.

Figure 1. Packing Overview

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FSB44104A	FSB44104A	SPMAA-A22	Rail	14

Integrated Power Functions

• 40 V $R_{DS(ON)} = 2.5 \text{ m}\Omega(typ.)$ inverter for three-phase DC / AC power conversion (please refer to Figure 3)

Integrated Drive, Protection, and System Control Functions

- For inverter high-side MOSFETs: gate drive circuit, high-voltage isolated high-speed level shifting, Under-Voltage Lock-Out (UVLO) Protection.
- For inverter low-side IGBTs: gate drive circuit, Under-Voltage Lock-Out (UVLO) Protection.
- Fault signaling: corresponding to UV (low-side supply).
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input

Pin Configuration

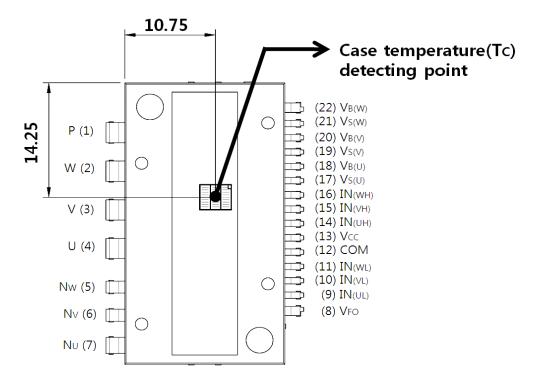


Figure 2.Top View

Pin Descriptions

Pin Number	Pin Name	Pin Description
1	Р	Positive DC-Link Input
2	W	W Phase Output
3	V	V Phase Output
4	U	U Phase Output
5	N _W	Negative DC-Link Input
6	N _V	Negative DC-Link Input
7	N _U	Negative DC-Link Input
8	V _{FO}	Fault Output
9	IN _(UL)	PWM Input for Low-Side U-Phase MOSFET Drive
10	IN _(VL)	PWM Input for Low-Side V-Phase MOSFET Drive
11	IN _(WL)	PWM Input for Low-Side W-Phase MOSFET Drive
12	СОМ	Common Supply Ground
13	Vcc	Common Supply Voltage for IC and Low-side MOSFET Drive
14	IN _(UH)	PWM Input for High-Side U-Phase MOSFET Drive
15	IN _(VH)	PWM Input for High-Side V-Phase MOSFET Drive
16	IN _(WH)	PWM Input for High-Side W-Phase MOSFET Drive
17	V _{B(U)}	Supply Voltage for High-Side U-Phase MOSFET Drive
18	V _{S(U)}	Supply Ground for High-Side U-Phase MOSFET Drive
19	$V_{B(V)}$	Supply Voltage for High-Side V-Phase MOSFET Drive
20	V _{S(V)}	Supply Ground for High-Side V-Phase MOSFET Drive
21	$V_{B(W)}$	Supply Voltage for High-Side W-Phase MOSFET Drive
22	V _{S(W)}	Supply Ground for High-Side W-Phase MOSFET Drive

Internal Equivalent Circuit and Input/Output Pins

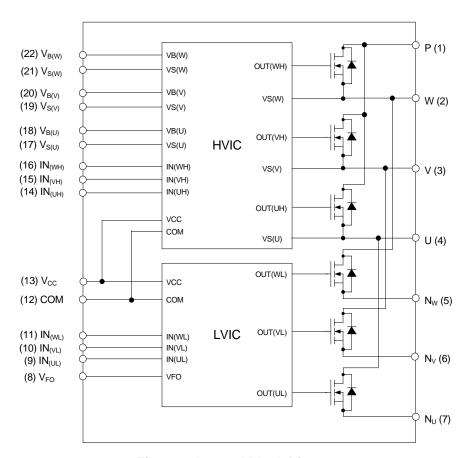


Figure 3. Internal Block Diagram

Absolute Maximum Ratings (TJ = 25°C, unless otherwise specified.)

Inverter Part

Symbol	ol Parameter Conditions		Rating	unit
V _{PN}	DC-Link Input Voltage Drain - Source Voltage	Applied between P - N _(U) , N _(V) , N _(W)	40	V
* ± I _D	Drain Current	$T_{C} = 25^{\circ}C, T_{J} \le 150^{\circ}C$	57	Α
		$T_C = 100^{\circ}C, T_J \le 150^{\circ}C$	36	Α
* ± I _{DP}	Peak Drain Current	T_C = 25°C, under 1ms Pulse Width, $T_J \le 150$ °C	110	А
* P _D	Maximum Power Dissipation	T_C = 25°C, per Chip, $T_J \le 150$ °C	28	W
TJ	Operating Junction Temperature		-40 ~ 150	°C

1st Notes:

Control Part

Symbol	Parameter	Conditions	Rating	unit
V _{CC}	Supply Voltage	Applied between V _{CC} - COM	20	V
V_{BS}	Supply Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	>
V _{IN}	PWM Signal Voltage	Applied between IN _(UH) , IN _(VH) , IN _(WH) , IN _(UL) , IN _(VL) , IN _(WL) - COM	-0.3 ~ V _{CC} +0.3	٧
V_{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3 ~ V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	1	mA

Total System

Symbol	Parameter	Conditions	Rating	unit
T _{STG}	Storage Temperature		-40 ~ 150	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat-Sink Plate	800	V _{rms}

Thermal Characteristics

Symbol	Parameter	Condition	Max.	unit
R _{th(j-c)}	Junction to Case Thermal Resistance	Package center (per MOSFET)	4.41	°C/W

^{1.} Rating value of marking "*" is calculation value or design factor.

Electrical Characteristics (TJ = 25° C, unless otherwise specified.)

Inverter Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain - Source Breakdown Voltage	$V_{IN} = 0 \text{ V}, I_D = 250 \mu\text{A} \text{ (2nd Notes 1)}$	40	-	-	V
R _{DS(ON)}	Drain - Source Turn-On Resistance	$V_{CC} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_D = 40 \text{ A}$	-	3.0	4.1	mΩ
V _{SD}	Source - Drain Diode Forward Voltage	$V_{CC} = V_{BS} = 15 \text{ V}, V_{IN} = 0 \text{ V}, I_{SD} = 40 \text{ A}$	-	0.8	1.1	V
t _{ON}	Switching Characteristic	$V_{PN} = 20 \text{ V}, V_{CC} = V_{BS} = 15 \text{ V}, I_D = 40 \text{ A},$	-	1200	-	ns
t _{C(ON)}		$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, High-side, Inductive Load (1st Note 3)	-	1140	-	ns
t _{OFF}			-	1700	-	ns
t _{C(OFF)}			-	500	-	ns
t _{rr}			-	70	-	ns
I _{rr}			-	5	-	Α
t _{ON}		$V_{PN} = 20 \text{ V}, V_{CC} = V_{BS} = 15 \text{ V}, I_D = 40 \text{ A},$	-	1370	-	ns
t _{C(ON)}		$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Low side, Inductive Load (1st Note 3)	-	1000	-	ns
t _{OFF}		(13111010 3)	-	1850	-	ns
t _{C(OFF)}			-	600	-	ns
t _{rr}			-	75	-	ns
I _{rr}			-	4	-	Α
I _{DSS}	Drain - Source Leakage Current	$V_{DS} = V_{DSS}$	-	-	250	μА

- 2. BV_{DSS} is the absolute maximum voltage rating between drain and source terminal of each MOSFET. V_{PN} should be sufficiently lees than this vale considering the effect of the stray inductance so that V_{DS} should not exceed BV_{DSS} in any case.
- 3. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of MOSFET itself under the given gate driving condition internally. For the detailed information, please see Figure 4.

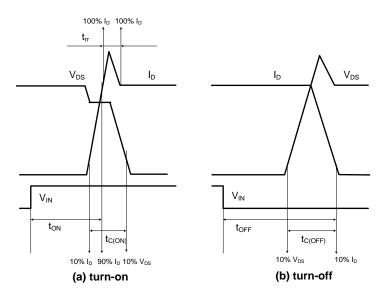
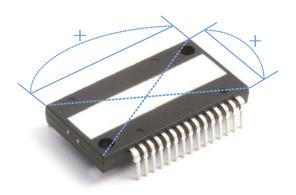


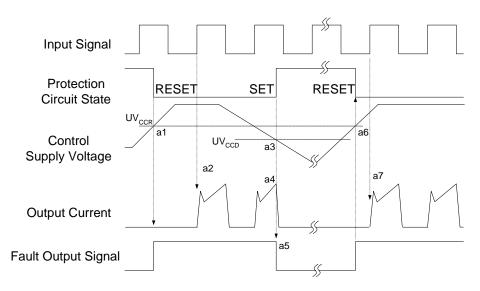
Figure 4. Switching Time Definition

Control Part

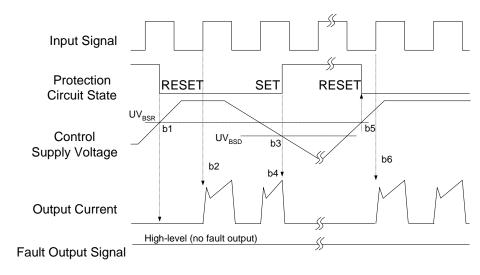

Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Unit
I _{QCC}	Quiescent V _{CC} Supply Current	V _{CC} = 15 V, V _{IN} = 0 V	V _{CC} - COM	-	-	2.75	mA
I _{QBS}	Quiescent V _{BS} Supply Current	V _{BS} = 15 V, V _{IN} = 0 V	$V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	-	-	0.3	mA
V_{FOH}	Fault Output Voltage	10 k Ω to 5 V Pull-up	Normal	4.5	-	-	V
V _{FOL}			Fault	-	-	0.5	V
UV _{CCD}	Supply Circuit Under-	Detection Level		7.0	8.2	10.0	V
UV _{CCR}	Voltage Protection	ltage Protection Reset Level		8.0	9.4	11.0	V
UV _{BSD}		Detection Level		7.0	8.0	9.5	V
UV_BSR		Reset Level		8.0	9.0	10.5	V
t _{FOD}	Fault-Out Pulse Width			30	-	-	μS
V _{IN(ON)}	ON Threshold Voltage	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$,		-	-	2.6	V
V _{IN(OFF)}	OFF Threshold Voltage	$IN_{(VL)}$, $IN_{(WL)}$ - COM		0.8	-	-	V

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P - N _(U) , N _(V) , N _(W)	-	20	-	V
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	13.5	15.0	16.5	V
V _{BS}	Control Supply Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.0	15.0	18.5	V
dV _{CC} /dt, dV _{BS} /dt	Control Supply Variation		-1	-	1	V / μs
V _{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including Surge Voltage)	-4	-	4	V


Mechanical Characteristics and Ratings

Parameter	Co	nditions		Limits		Units
Parameter	Col	nations	Min.	Тур.	Max.	Ullis
Mounting Torque	Mounting Screw: M3		0.51	0.62	0.72	N•m
Device Flatness		See Figure 5	-	-	120	μm
Weight			-	8.4	-	g


Figure 5. Flatness Measurement Position

Time Charts of Protective Function

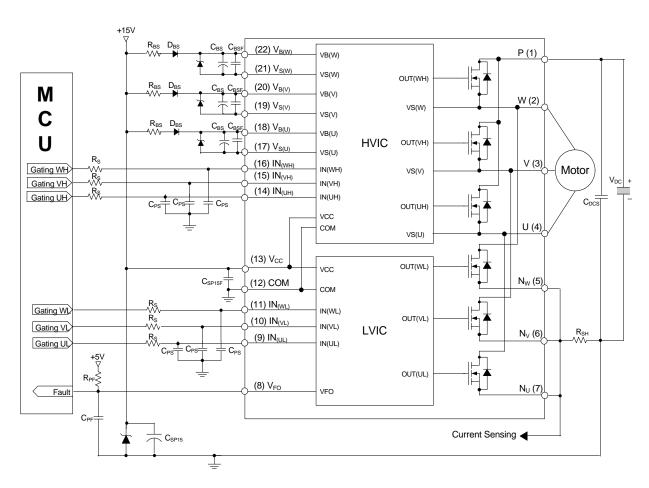
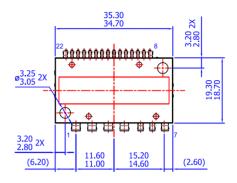
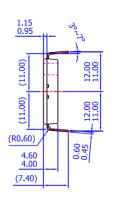

- a1 : Control supply voltage rises: after the voltage rises UV_{CCR}, the circuits start to operate when the next input is applied.
- a2: Normal operation: MOSFET ON and carrying current.
- a3 : Under-voltage detection (UV_{CCD}).
- a4: MOSFET OFF in spite of control input condition.
- a5 : Fault output operation starts.
- a6 : Under-voltage reset (UV $_{CCR}$).
- a7: Normal operation: MOSFET ON and carrying current.

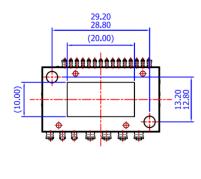
Figure 6. Under-Voltage Protection (Low-Side)

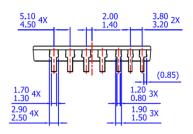
- b1 : Control supply voltage rises: after the voltage reaches UV_{BSR}, the circuits start to operate when the next input is applied.
- b2: Normal operation: MOSFET ON and carrying current.
- b3: Under-voltage detection (UV_{BSD}).
- b4 : MOSFET OFF in spite of control input condition, but there is no fault output signal.
- b5 : Under-voltage reset (UV_{BSR}).
- b6: Normal operation: MOSFET ON and carrying current

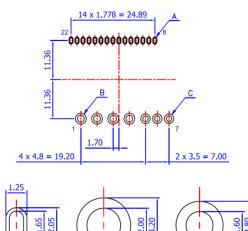
Figure 7. Under-Voltage Protection (High-Side)


Figure 8. Typical Application Circuit


2nd Notes:


- 1. To avoid malfunction, the wiring of each input should be as short as possible (less than 2~3 cm).
- 2. V_{FO} output is open-drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes IFO up to 1 mA.
- 3. Input signal is active-HIGH type. There is a 5 k Ω resistor inside the IC to pull-down each input signal line to GND. RC coupling circuits is recommended for the prevention of input signal oscillation. R_FC_F constant should be selected in the range 50 ~ 150 ns (recommended R_S = 100 Ω , C_{PS} = 1 nF).
- 4. Each capacitors should be mounted as close to the Motion $\mathsf{SPM}^{\textcircled{\$}}$ module pins as possible.
- 5. The zener diode should be adopted for the protection of ICs from the surge destruction between each pair of control supply terminals(recommended zener diode = 24 V / 1 W).


Detailed Package Outline Drawing



NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD
- B) ALL DIMENSIONS ARE IN MILLIMETERS
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D) () IS REFERENCE
- E) [] IS ASS'Y QUALITY
- F) DRAWING FILENAME: MOD22AAREV1.0
- G) FAIRCHILD SEMICONDUCTOR

DETAIL B

DETAIL C

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or data on the drawing and contact a FairchildSemiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide therm and conditions, specifically the the warranty therein, which covers Fairchild products.

DETAIL A

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/dwg/MO/MOD22AA.pdf

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS" AX-CAP FRFET® Global Power ResourceSM BitSiC™ GreenBridge™ Build it Now™

CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™

CROSSVOLT™ Gmax™ CTL™ **GTO™** IntelliMAXTM Current Transfer Logic™ DEUXPEED[®] ISOPLANAR™

Dual Cool™ Making Small Speakers Sound Louder

EcoSPARK® and Better™ EfficientMax™ MegaBuck^{TI} MICROCOUPLER™ ESBCTM

MicroFET¹¹ MicroPak™ Fairchild[®] MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ MotionMax™ mWSaver

FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ **OPTOPLANAR**[®] **FPS™**

PowerTrench® PowerXS™

Programmable Active Droop™

OFFT OSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise** SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH* SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM SERVERALS

TinyBoost[®] TinyBuck TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™

TriFault Detect™ TRUECURRENT®* uSerDes™

UHC Ultra FRFET™ UniFET* VCX** VisualMax™ VoltagePlus™ XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full fraceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FSB44104A