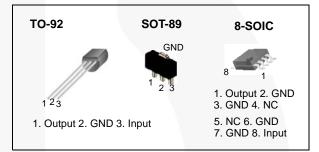


July 2015


MC78LXXA / LM78LXXA 3-Terminal 0.1 A Positive Voltage Regulator

Features

- Maximum Output Current of 100 mA
- Output Voltage of 5 V, 6 V, 8 V, 12 V, and 15 V
- Thermal Overload Protection
- · Short-Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance

Description

The MC78LXXA / LM78LXXA series of fixed-voltage monolithic integrated circuit voltage regulators are suitable for applications that required supply current up to 100 mA.

Ordering Information

Product Number	Package	Packing Method	Output Voltage Tolerance	Operating Temperature
LM78L05ACZ		Bulk		
LM78L05ACZX		Tape & Reel		
LM78L05ACZXA		Ammo		
LM78L12ACZ		Bulk		
LM78L12ACZX		Tape & Reel		
MC78L05ACP	TO-92	Bulk		
MC78L05ACPXA		Ammo		
MC78L06ACP		Bulk	±5%	-40 to +125°C
MC78L08ACP		Bulk		
MC78L15ACP		Bulk		
MC78L15ACPXA		Ammo		
MC78L05ACD	8-SOIC	Rail		
MC78L05ACDX	6-30IC	Tape & Reel		
MC78L05ACHX	SOT-89	Tape & Reel		
MC78L08ACHX	301-09	Tape & Reel		

Block Diagram

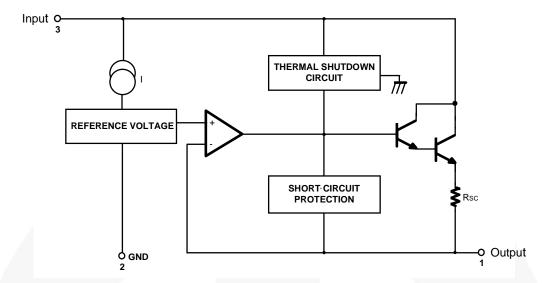


Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Paramete	r	Value	Unit
	Input Voltage	V _O = 5 V to 8 V	30	V
VI	Input Voltage	V _O = 12 V to 15 V	35	V
T _{OPR}	Operating Temperature Range	-40 to +125°C	°C	
T _{J(MAX)}	Maximum Junction Temperature	150	°C	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
$R_{\theta JC}$	Thermal Resistance, Junction-Case	TO-92	50	°C/W
		TO-92	150	°C/W
$R_{\theta JA}$ Th	Thermal Resistance, Junction-Air	SOT-89	225	°C/W
		8-SOIC	160	°C/W

Electrical Characteristics (MC78L05A / LM78L05A)

 $V_I = 10 \text{ V, } I_O = 40 \text{ mA, } -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \text{ } \mu\text{F, } C_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$

Symbol	Parameter		Cond	Conditions		Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		4.8	5.0	5.2	V
ΔV_{O}	Line Regulation ⁽¹⁾		T _{.1} = 25°C	$7 \text{ V} \leq \text{V}_1 \leq 20 \text{ V}$		8	150	mV
ΔνΟ	Line Regulation.		1 j = 25 C	$8 \text{ V} \leq \text{V}_{\text{I}} \leq 20 \text{ V}$		6	100	mV
ΔV _O	Load Regulation ⁽¹⁾		T _{.1} = 25°C	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$		11	60	mV
7,0) Load Regulation (*)		1	1 mA \leq I _O \leq 40 mA		5.0	30.0	mV
V	Output Voltage		$7 \text{ V} \leq \text{V}_1 \leq 20 \text{ V}$	1 mA \leq I _O \leq 40 mA			5.25	V
Vo			$7 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{MAX}}^{(2)}$	1 mA \leq I _O \leq 70 mA	4.75		5.25	V
IQ	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_{Q}	Quiescent Current	With Line	$8 \text{ V} \leq \text{V}_{\text{I}} \leq 20 \text{ V}$				1.5	mA
ΔI_{Q}	Change	With Load	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$	1			0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz	≤ f ≤ 100 kHz		40		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-0.65		mV/°C
RR	Ripple Rejection		f = 120 Hz, 8 V ≤ \	$V_{\rm I} \le 18 \text{ V}, T_{\rm J} = 25^{\circ}\text{C}$	41	80		dB
V_{D}	Dropout Voltage		T _J = 25°C			1.7		V

- 1. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
- 2. Power dissipation $P_D \le 0.75 \text{ W}$.

Electrical Characteristics (MC78L06A)

 $V_I = 12 \text{ V, I}_O = 40 \text{ mA, -}40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, C}_I = 0.33 \text{ }\mu\text{F, C}_O = 0.1 \text{ }\mu\text{F, unless otherwise specified.}$

Symbol	Parameter		Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage		$T_J = 25^{\circ}C$		5.75	6.0	6.25	V
41/	Line Regulation ⁽³⁾		T _ 25°C	$8.5 \text{ V} \le \text{V}_1 \le 20 \text{ V}$ $9 \text{ V} \le \text{V}_1 \le 20 \text{ V}$		64	175	mV
ΔV_{O}	Line Regulation (*)		1 _J = 25 C	9 V ≤ V _I ≤ 20 V		54	125	mV
41/	Load Regulation ⁽³⁾		T _J = 25°C	1 mA ≤ I _O ≤ 100 mA		12.8	80.0	mV
ΔV_{O}	Load Regulation		1j = 25 C	$1 \text{ mA} \le I_O \le 70 \text{ mA}$		5.8	40.0	mV
V	Outrait Valtana		8.5 V ≤ V _I ≤	≤ 20 V, 1 mA ≤ I _O ≤ 40 mA	5.7		6.3	V
Vo	Output Voltage		$8.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(4)}, 1 \text{ mA} \le \text{I}_{\text{O}} \le 70 \text{ mA}$		5.7		6.3	V
1	Quiescent Current		$T_J = 25^{\circ}C$				5.5	mA
Ι _Q	Quiescent Current		$T_J = 125^{\circ}C$			3.9	6.0	mA
ΔI_{Q}	Quiescent Current	With Line	$9 \text{ V} \leq \text{V}_1 \leq 2$	20 V			1.5	mA
ΔI_{Q}	Change	With Load	1 mA ≤ I _O ≤	≤ 40 mA			0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C,$	10 Hz ≤ f ≤ 100 kHz		40		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			0.75		mV/°C
RR	Ripple Rejection		f = 120 Hz,	$10 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}, \text{T}_{\text{J}} = 25^{\circ}\text{C}$	40	46		dB
V_D	Dropout Voltage	_	$T_J = 25^{\circ}C$			1.7		V

- 3. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

 4. Power dissipation P_D ≤ 0.75 W.

Electrical Characteristics (MC78L08A)

 $V_I = 14 \text{ V, } I_O = 40 \text{ mA, } -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \text{ } \mu\text{F, } C_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$

Symbol	Parameter		Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		7.7	8.0	8.3	V
ΔV_{O}	Line Regulation ⁽⁵⁾		T _{.l} = 25°C	$10.5~V \leq V_I \leq 23~V$		10	175	mV
7,0	Line Regulation		1) = 25 0	$11~V \leq V_I \leq 23~V$		8	125	mV
ΔV_{O}	Load Regulation ⁽⁵⁾		T _{.l} = 25°C	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$		15	80	mV
7,0	Load Negulation		1) = 25 0	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$		8	40	mV
V	Output Voltage		$10.5V \le V_I \le 23V$	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$	7.6		8.4	V
Vo			$10.5V \le V_I \le V_{MAX}^{(6)}$	$1 \text{ mA} \le I_{O} \le 70 \text{ mA}$	7.6		8.4	V
IQ	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_{Q}	Quiescent Current	With Line	$11 \text{ V} \leq \text{V}_{\text{I}} \leq 23 \text{ V}$				1.5	mA
ΔI_{Q}	Change	With Load	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f	≤100 kHz		60		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		I _O = 5 mA		_	-0.8		mV/°C
RR	Ripple Rejection		f = 120 Hz, 11 V ≤ V _I	≤ 21 V, T _J = 25°C	39	70		dB
V_{D}	Dropout Voltage		T _J = 25°C			1.7		V

- 5. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
- 6. Power dissipation $P_D \le 0.75 \text{ W}$.

Electrical Characteristics (MC78L12A / LM78L12A)

 $V_I = 19 \text{ V, } I_O = 40 \text{ mA, } -40^{\circ}C \leq T_J \leq 125^{\circ}C, \ C_I = 0.33 \ \mu\text{F, } C_O = 0.1 \ \mu\text{F, unless otherwise specified.}$

Symbol	Parameter		Condi	tions	Min.	Тур.	Max.	Unit
Vo	Output Voltage		$T_J = 25^{\circ}C$		11.5	12.0	12.5	V
ΔV_{O}	Line Regulation (7	·)	T _{.l} = 25°C	$14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$		20	250	mV
ΔνΟ	Line Regulation	<i>'</i>	1j = 25 C	16 $V \le V_1 \le 27 V$		15	200	mV
ΔV _O	Load Regulation (7)	T _{.1} = 25°C	$1 \text{ mA} \le I_O \le 100 \text{ mA}$		20	100	mV
7,0	Load Regulation (*)		1) = 25 0	$1 \text{ mA} \le I_O \le 40 \text{ mA}$		10	50	mV
V-	Output Voltage		$14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$	11.4		12.6	V
Vo			$14.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(8)}$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$	11.4		12.6	V
IQ	Quiescent Current		$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_{Q}	Quiescent	With Line	$16 \text{ V} \leq \text{V}_{\text{I}} \leq 27 \text{ V}$				1.5	mA
ΔI_{Q}	Current Change	With Load	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C, 10 \text{ Hz} \le f$	≤ 100 kHz		80		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-1.0		mV/°C
RR	Ripple Rejection		$f = 120 \text{ Hz}, 15 \text{ V} \le \text{V}_1$	≤ 25 V, T _J = 25°C	37	65		dB
V_{D}	Dropout Voltage		T _J = 25°C			1.7		V

- 7. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
- 8. Power dissipation $P_D \le 0.75 \text{ W}$.

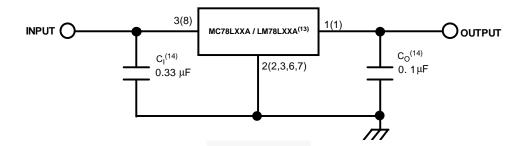
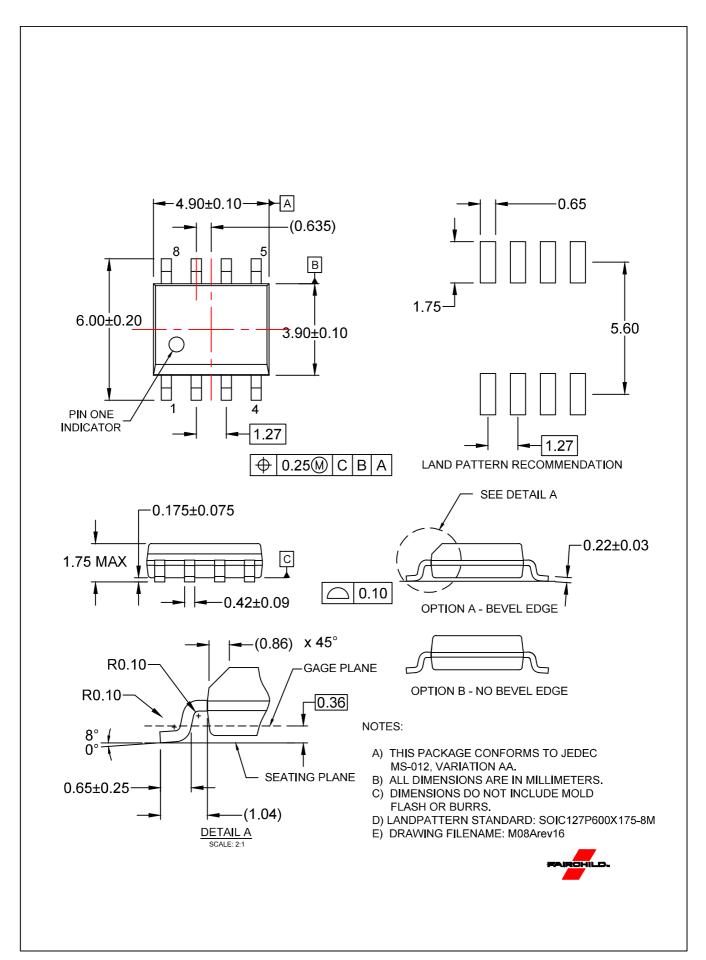
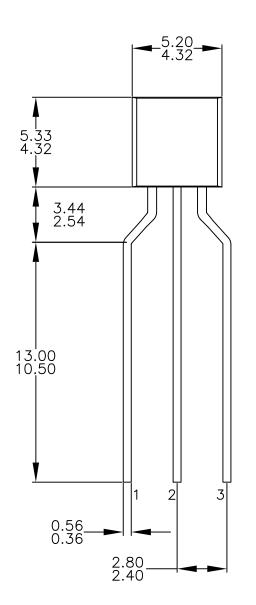
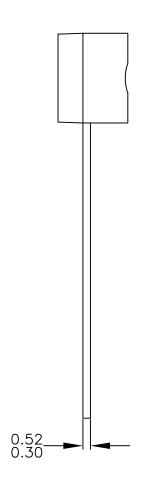
Electrical Characteristics (MC78L15A)

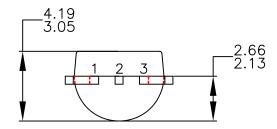
 $V_I = 23~V,~I_O = 40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I = 0.33~\mu F,~C_O = 0.1~\mu F,~unless~otherwise~specified.$

Symbol	Parameter		Condit	ions	Min.	Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		14.4	15.0	15.6	V
ΔV_{O}	Line Regulation ⁽⁹⁾		T _{.l} = 25°C	$17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$		25	300	mV
700	Line Regulation		1j = 25 C	$20~V \leq V_I \leq 30~V$		20	250	mV
ΔV _O	Load Regulation ⁽⁹	9)	T _{.l} = 25°C	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$		25	150	mV
7,0	Load Negulation	•	1) = 25 C	$1 \text{ mA} \le I_O \le 40 \text{ mA}$		12	75	mV
V	Output Voltage		$17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$	14.25		15.75	V
Vo	Output Voltage		$17.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(10)}$	$1~\text{mA} \leq I_O \leq 70~\text{mA}$	14.25		15.75	V
IQ	Quiescent Curren	t	$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_{Q}	Quiescent	With Line	$20~V \leq V_I \leq 30~V$				1.5	mA
ΔI_{Q}	Current Change	With Load	1 mA \leq I _O \leq 40 mA				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f \leq	100 kHz		90		$\mu\text{V/Vo}$
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-1.3		mV/°C
RR	Ripple Rejection		$f = 120 \text{ Hz}, 18.5 \text{ V} \le \text{V}_{\text{I}}$	≤28.5 V, T _J = 25°C	34	60		dB
V_{D}	Dropout Voltage		T _J = 25°C			1.7		V

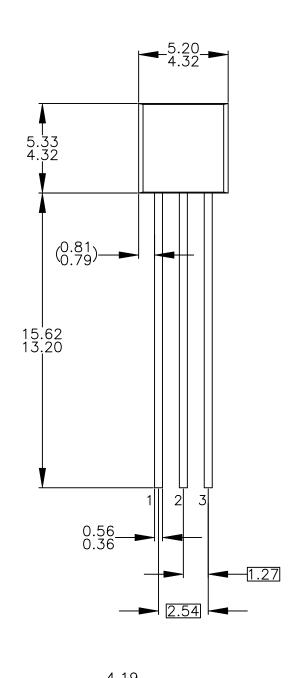
- 9. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
- 10. Power dissipation $P_D \le 0.75 \text{ W}$.

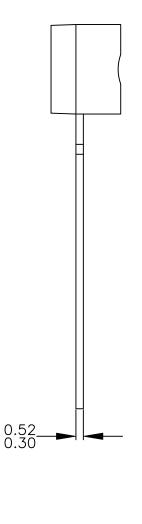
Typical Application

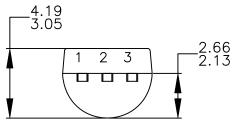

Figure 2. Typical Application

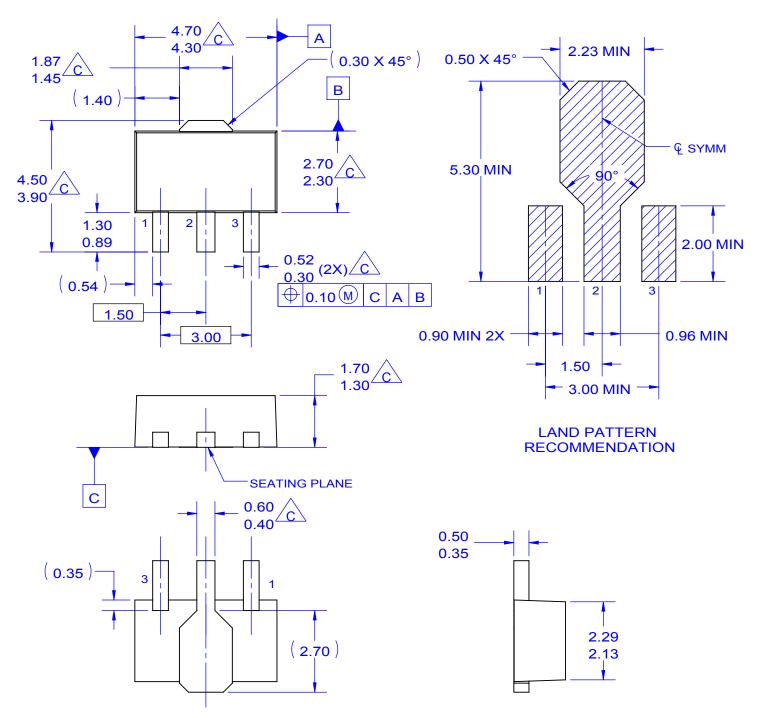
- 13. To specify an output voltage, substitute voltage value for "XX".
- 14. C_1 is required if the regulator is located an appreciable distance from the power supply filter. Though C_0 is not needed for stability, it improves transient response. Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator.





NOTES: UNLESS OTHERWISE SPECIFIED


- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3FREV3.
 FAIRCHILD SEMICONDUCTOR.
- B. C. D. E.



NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3DREV4.

NOTES: UNLESS OTHERWISE SPECIFIED.

A. REFERENCE TO JEDEC TO-243 VARIATION AA.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

C DOES NOT COMPLY JEDEC STANDARD VALUE.

D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSION.

E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

F. DRAWING FILE NAME: MA03CREV3

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: MC78L06ACPXA MC78L06ACP