
AUTOMOTIVE GRADE

AUIRFR8405 AUIRFU8405

Features

- Advanced Process Technology
- New Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

$V_{ exttt{DSS}}$		40V
$R_{DS(on)}$	typ.	1.65m Ω
	max.	1.98m Ω
I _{D (Silicon Lim}	ited)	211A①
I _{D (Package Li}	mited)	100A

D

Drain

AUIRFR8405TRL

S

Source

G

Gate

3000

use in Automotive applications and wide variety of other applications. **Applications**

Description

- Electric Power Steering (EPS)
- **Battery Switch**
- Start/Stop Micro Hybrid
- Heavy Loads

AUIRFR8405

DC-DC Converter				
Daga want number	Daakana Tuna	Standard Pack		Oudevehle Deut Neuscheu
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRFU8405	I-Pak	Tube	75	AUIRFU8405
		Tube	75	AURER8405

Tape and Reel Left

Absolute Maximum Ratings

D-Pak

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	211①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	150①	\neg
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	100	A
I _{DM}	Pulsed Drain Current ②	804⑩	
P _D @T _C = 25°C	Maximum Power Dissipation	163	W
	Linear Derating Factor	1.1	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 3	208	m l
E _{AS} (tested)	Single Pulse Avalanche Energy (Tested Limited) ③	256	mJ
I _{AR}	Avalanche Current ②	See Fig. 14, 15, 24a, 24b	Α
E _{AR}	Repetitive Avalanche Energy ②		mJ

Thermal Resistance

THOUSAND TROOPERS				
Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.92	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of Infineon.

2015-10-12

^{*}Qualification standards can be found at www.infineon.com

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I _D = 5mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.65	1.98	mΩ	V _{GS} = 10V, I _D = 90A** ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
	Drain to Source Leakage Current			1.0	μA	$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			150	μΑ	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	~ Λ	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R_G	Internal Gate Resistance		2.3		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

gfs	Forward Trans conductance	294			S	$V_{DS} = 10V, I_{D} = 90A^{**}$
Q_g	Total Gate Charge		103	155		$I_D = 90A^{**}$
Q_{gs}	Gate-to-Source Charge		26		nC	$V_{DS} = 20V$
Q_{gd}	Gate-to-Drain Charge		38		110	V _{GS} = 10V ^⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		65			
$t_{d(on)}$	Turn-On Delay Time		12			$V_{DD} = 26V$
t _r	Rise Time		80		20	$I_D = 90A^{**}$
$t_{d(off)}$	Turn-Off Delay Time		51		ns	$R_G = 2.7\Omega$
t _f	Fall Time		51			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		5171			$V_{GS} = 0V$
C _{oss}	Output Capacitance		770			$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		523		pF	f = 1.0MHz, See Fig. 5
C _{oss eff.} (ER)	Effective Output Capacitance (Energy Related)		939			V_{GS} = 0V, V_{DS} = 0V to 32V ⑦
C _{oss eff.} (TR)	Effective Output Capacitance (Time Related)		1054			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V $

Diode Characteristics

						1
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			211①		MOSFET symbol
.2	(Body Diode)				Α	showing the
1	Pulsed Source Current			804⑩		integral reverse
I _{SM}	(Body Diode) ①			004®		p-n junction diode.
V_{SD}	Diode Forward Voltage		0.9	1.3	V	$T_J = 25^{\circ}C, I_S = 90A^{**}, V_{GS} = 0V$ (S)
dv/dt	Peak Diode Recovery dv/dt⊕		2.1		V/ns	$T_J = 175^{\circ}C, I_S = 90A^{**}, V_{DS} = 40V$
t _{rr}	Reverse Recovery Time		28		200	$T_J = 25^{\circ}C$ $V_R = 34V$,
			29		ns	$T_J = 125^{\circ}C$ $I_F = 90A^{**}$
Q_{rr}	Reverse Recovery Charge		19		nC	$T_J = 25^{\circ}C$ di/dt = 100A/µs ©
			20		IIC	T _J = 125°C α//αι = 100Α/μs ⑤
I _{RRM}	Reverse Recovery Current		1.1		Α	T _J = 25°C

Notes:

- Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 100A by source bonding technology. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 3 Limited by T_{Jmax} starting $T_J = 25$ °C, L = 0.051mH, $R_G = 50\Omega$, $I_{AS} = 90$ A, $V_{GS} = 10$ V. Part not recommended for use above this value.
- 4 $I_{SD} \le 90A$, $di/dt \le 1304A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175^{\circ}C$.
- ⑤ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \odot Coss eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while V_{DS} is rising from 0 to 80% V_{DSS}.

 ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- R_{θ} is measured at T_{J} approximately 90°C.
- Pulse drain current is limited by source bonding technology.
- ** All AC and DC test condition based on old Package limitation current = 90A.

2015-10-12

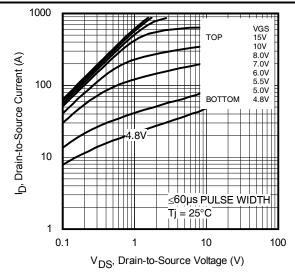


Fig. 1 Typical Output Characteristics

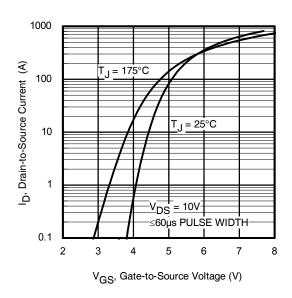


Fig. 3 Typical Transfer Characteristics

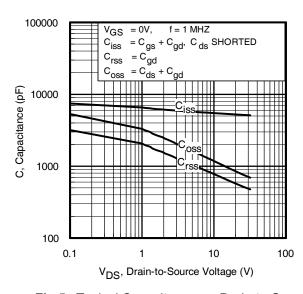


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

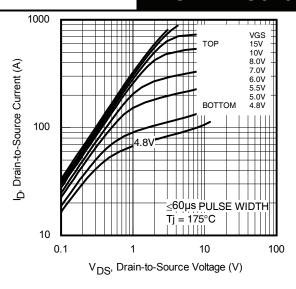


Fig. 2 Typical Output Characteristics

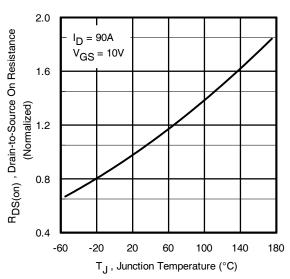
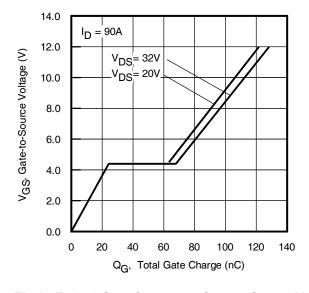
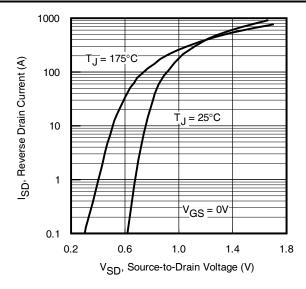
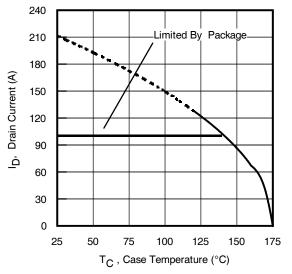


Fig. 4 Normalized On-Resistance vs. Temperature


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

10000 ID, Drain-to-Source Current (A) 1000 100 Limited by Package 10 25°C DC Tj = 175°C Single Pulse 0.1 0.1 10 100 V_{DS}, Drain-to-Source Voltage (V)

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

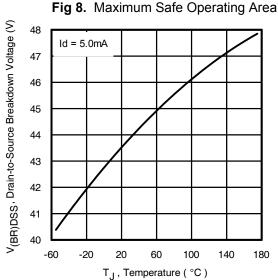


Fig 10. Drain-to-Source Breakdown Voltage

 I_D

18A 37A

90A

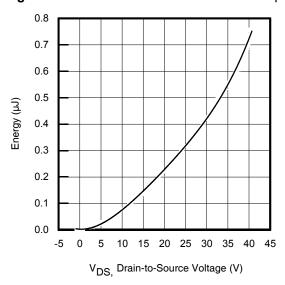
TOP

BOTTOM

900

800

700


600

0

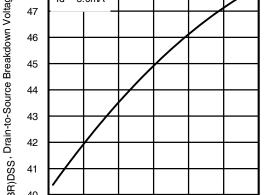
25

50

Fig. 9 Maximum Drain Current vs. Case Temperature

 E_{AS} , Single Pulse Avalanche Energy (mJ) 500 400 300 200 100

Fig. 11 Typical Coss Stored Energy


Fig 12. Maximum Avalanche Energy vs. Drain Current

100

Starting T_J, Junction Temperature (°C)

125

150

75

175

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

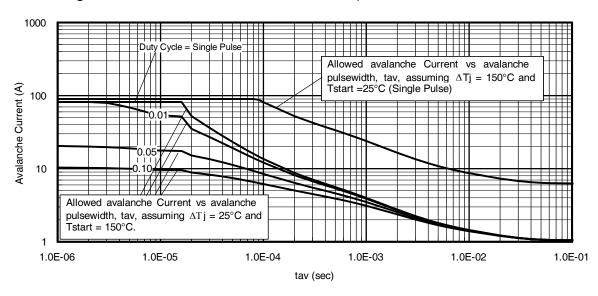


Fig 14. Typical Avalanche Current Vs. Pulse width

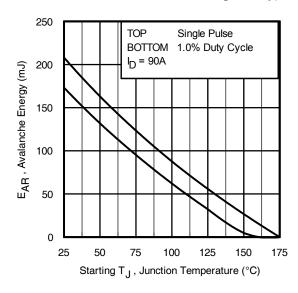


Fig 15. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- (For further info, see AN-1005 at www.infineon.com)1. Avalanche failures assumption:Purely a thermal phenomenon and failure occurs at a temperature far in
- excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as $T_{\text{\scriptsize Jmax}}$ is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{Z}_{thJC} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

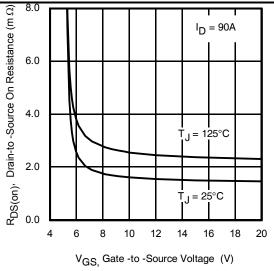


Fig 16. On-Resistance vs. Gate Voltage

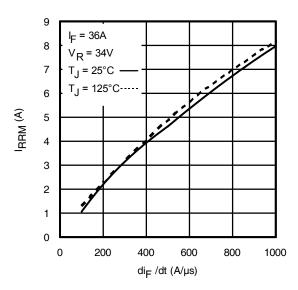


Fig. 18 - Typical Recovery Current vs. dif/dt

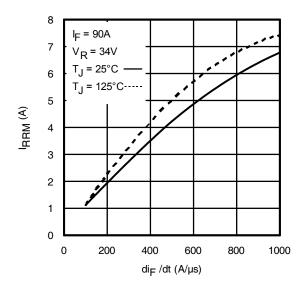


Fig. 20 - Typical Recovery Current vs. dif/dt

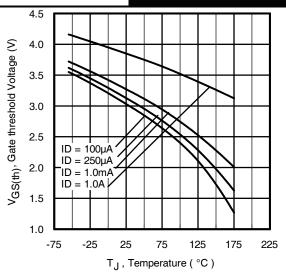


Fig. 17 - Threshold Voltage vs. Temperature

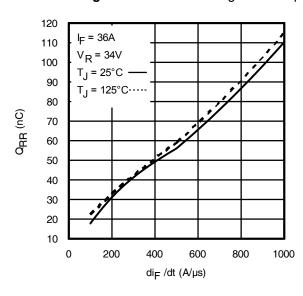


Fig. 19 - Typical Stored Charge vs. dif/dt

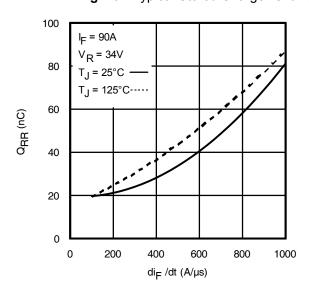


Fig. 21 - Typical Stored Charge vs. dif/dt

2015-10-12

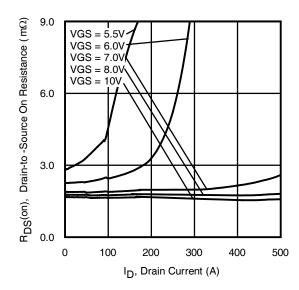


Fig 22. Typical On-Resistance vs. Drain Current

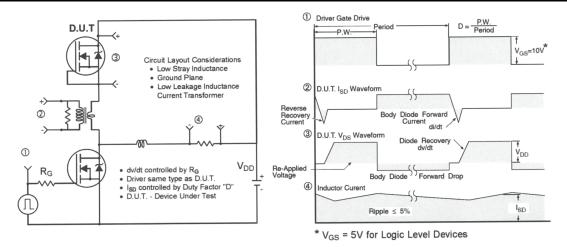


Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

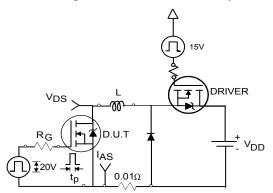


Fig 24a. Unclamped Inductive Test Circuit

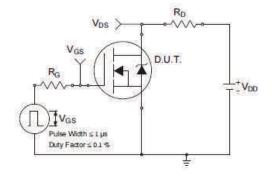


Fig 25a. Switching Time Test Circuit

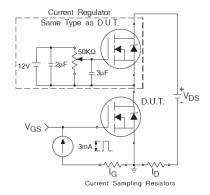


Fig 26a. Gate Charge Test Circuit

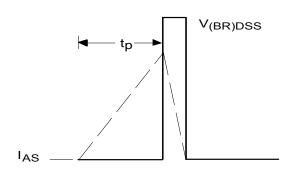


Fig 24b. Unclamped Inductive Waveforms

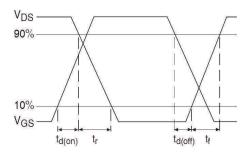


Fig 25b. Switching Time Waveforms

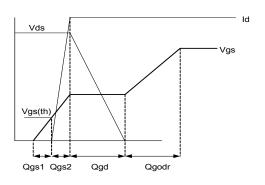
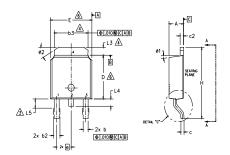
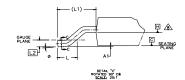
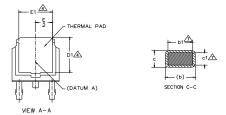



Fig 26b. Gate Charge Waveform


8



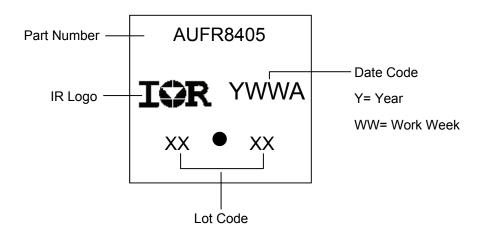
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- 1 LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- Limension D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- ♠ DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M		DIMEN	SIONS		Ŋ
B	MILLIM	ETERS	INC	HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
b	0.64	0.89	.025	.035	
ь1	0.65	0.79	.025	.031	7
b2	0.76	1.14	.030	.045	
b3	4.95	5.46	.195	.215	4
С	0.46	0.61	.018	.024	
с1	0.41	0.56	.016	.022	7
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
Ε	6.35	6.73	.250	.265	6
E1	4.32	-	.170	-	4
е	2.29	BSC	.090	BSC	
Н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1.14	1.52	.045	.060	3
ø	0,	10*	0,	10°	
ø1	0,	15*	0.	15*	
ø2	25*	35°	25*	35°	

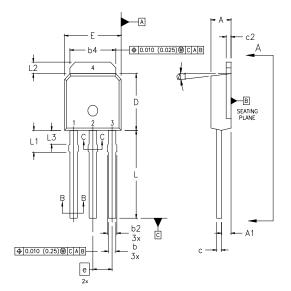
LEAD ASSIGNMENTS

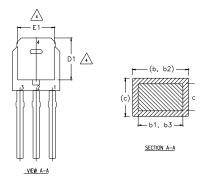

HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE
- 4.- DRAIN

IGBT & CoPAK

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER
- 4.- COLLECTOR


D-Pak (TO-252AA) Part Marking Information



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches)

NOTES:

SYMBOL

A1

b

ь1

b2

b4

c1 c2

D

D1

E1

e L

L1

L2

L3

- 1 DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- 2 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 4 THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.

INCHES

.094

0.045

0.035

0.031

0.045

0.041

0.215

0.024

0.022

0.035

0.245

0.265

0.380

0.090

0.050

0.060

15*

0.086

0.035

0.025

0.025

0.030

0.030

0.195

0.018

0.016

0.018

0.235

0.205

0.250

0.170

0.350

0.075

0.035

0.045

0.090 BSC

NOTES

LEAD DIMENSION UNCONTROLLED IN L3.

2.39

1.14

0.89

0.79

1.14

1.04

5.46

0.61

0.56

0.86

6.22

6.73

9.60

2.29

1.27

1.52

- 6 DIMENSION 61, 63 APPLY TO BASE METAL ONLY.
 - OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA.

DIMENSIONS

8 CONTROLLING DIMENSION: INCHES.

MILLIMETERS

MIN.

2.18

0.89

0.64

0.64

0.76

0.76

5.00

0.46

0.41

.046

5.97

5.21

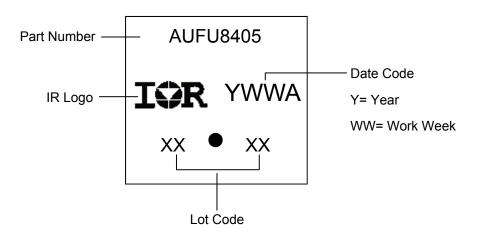
6.35

4.32

8.89

1,91

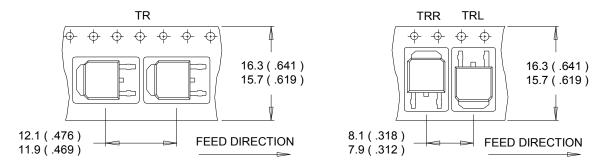
0.89


1.14

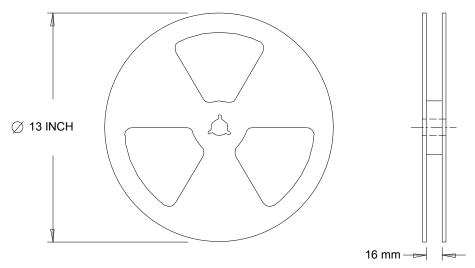
LEAD	ASSI	GN	MEN	15

HEX	Jr E

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN


I-Pak (TO-251AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/



D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

4000000						
		Automotive (per AEC-Q101)				
Qualifica	tion Level	Comments: This part number(s) passed Automotive qualification. Infine Industrial and Consumer qualification level is granted by extension of the high Automotive level.				
		D-Pak	MCI 4			
Woisture	Sensitivity Level	I-Pak	MSL1			
	Maghina Madal		Class M3 (+/- 400V) [†]			
	Machine Model	AEC-Q101-002				
FOD	Liverson Dady Madal	Class H1C (+/- 2000V) [†]				
ESD	Human Body Model	AEC-Q101-001				
	Charged Davies Madel	Class C5 (+/- 2000V) [†]				
	Charged Device Model	AEC-Q101-005				
RoHS Compliant		Yes				

[†] Highest passing voltage.

Revision History

Date	Comments
10/17/2014	Corrected label on SOA curve Fig 8 on page 4.
	Updated Package outline on page 9 & 10
10/12/2015	Updated datasheet with corporate template
	Corrected ordering table on page 1.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

International Rectifier:

AUIRFR8405 AUIRFR8405TRL AUIRFU8405