Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage $-\mathrm{dV} / \mathrm{dt}$ immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V input logic compatible
- Separate logic supply range from 3.3 V to 20 V
- Logic and power ground $\pm 5 \mathrm{~V}$ offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Output in phase with inputs
- Leadfree, RoHS Compliant

Description

The IRS2113MPBF is a high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N -channel power MOSFET or IGBT in the high side configuration which operates up to 600 V .

Product Summary

Topology	2 channels
$\mathrm{V}_{\text {OFFSET }}$	600 V max
$\mathrm{V}_{\text {OUT }}$	$10 \mathrm{~V}-20 \mathrm{~V}$
$\mathrm{I}_{\text {o }} \& \mathrm{I}_{\mathrm{o}-}$ (typical)	$2.5 \mathrm{~A} / 2.5 \mathrm{~A}$
$\mathrm{t}_{\text {ON }} \& \mathrm{t}_{\text {OFF }}$ (typical)	$130 \mathrm{~ns} \& 120 \mathrm{~ns}$
Delay Matching	20 ns max

Package Option

Typical Connection Diagram

(Refer to Leads Assignment for correct pin configurations) This diagram shows electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

Qualification Information ${ }^{\dagger}$

			$\begin{aligned} & \text { strial } \\ & \text { EC JESD 47) } \end{aligned}$
Quali		Comments: This IC qualification. IR's granted by extension	passed JEDEC's Industria umer qualification level is he higher Industrial level.
Moist	vel	MLPQ4x4 14L	$\begin{gathered} \text { MSL2 }{ }^{\text {TTt }} \\ \text { (per IPC/JEDEC J-STD- } \\ 020 \text {) } \end{gathered}$
	Machine Model	(per JEDEC	$\begin{aligned} & \text { (+/-200V) } \\ & \text { dard JESD22-A115) } \end{aligned}$
ESD	Human Body Model	Clas (per EIA/JEDEC	$\begin{aligned} & \text { (+/-1000V) } \\ & \text { dard EIA/JESD22-A114) } \end{aligned}$
	Charged Device Model	$\begin{array}{r} \text { Clas } \\ \text { (per JEDEC } \end{array}$	(+/-1000V)
IC La			$\begin{aligned} & \text { II, Level A } \\ & \text { ESD78A) } \end{aligned}$
RoHS			Yes

\dagger Qualification standards can be found at International Rectifier's web site http://www.irf.com/
$\dagger \dagger$ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
$\dagger \dagger \dagger$ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_{B}	High-side floating supply voltage	-0.3	625	V
$\mathrm{V}_{\text {S }}$	High-side floating supply offset voltage	$\mathrm{V}_{\mathrm{B}}-20$	$\mathrm{V}_{\mathrm{B}}+0.3$	
V_{HO}	High-side floating output voltage	$\mathrm{V}_{\mathrm{S}}-0.3$	$\mathrm{V}_{\mathrm{B}}+0.3$	
$\mathrm{V}_{\text {cc }}$	Low-side fixed supply voltage	-0.3	25	
$\mathrm{V}_{\text {Lo }}$	Low-side output voltage	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
$V_{D D}$	Logic supply voltage	-0.3	$\mathrm{V}_{S S}+20(\dagger)$	
$\mathrm{V}_{\text {ss }}$	Logic supply offset voltage	$\mathrm{V}_{\mathrm{CC}}-20$	$\mathrm{V}_{\text {cc }}+0.3$	
V_{IN}	Logic input voltage (HIN, LIN \& SD)	$\mathrm{V}_{\text {Ss }}-0.3$	$V_{D D}+0.3$	
$\mathrm{dV}_{\mathrm{s}} / \mathrm{dt}$	Allowable offset supply voltage transient (Fig. 2)	-	50	V/ns
P_{D}	Package power dissipation @ TA $\leq 25^{\circ} \mathrm{C}$	-	2.08	W
$\mathrm{Rth}_{J A}$	Thermal resistance, junction to ambient	-	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {J }}$	Junction temperature	-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {S }}$	Storage temperature	-55	150	
T_{L}	Lead temperature (soldering, 10 seconds)	-	300	

\dagger All supplies are fully tested at 25 V , and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_{S} and V_{SS} offset rating are tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V_{B}	High-side floating supply absolute voltage	$\mathrm{V}_{\mathrm{S}}+10$	$\mathrm{V}_{\mathrm{S}}+20$	V
$\mathrm{V}_{\text {S }}$	High-side floating supply offset voltage	\dagger	600	
V_{HO}	High-side floating output voltage	$\mathrm{V}_{\text {s }}$	V_{B}	
V_{CC}	Low-side fixed supply voltage	10	20	
$\mathrm{V}_{\text {LO }}$	Low-side output voltage	0	V_{cc}	
V_{DD}	Logic supply voltage	$\mathrm{V}_{\text {SS }}+3$	$\mathrm{V}_{\text {ss }}+20$	
$\mathrm{V}_{\text {SS }}$	Logic ground offset voltage	$-5(\dagger \dagger)$	5	
$\mathrm{V}_{\text {IN }}$	Logic input voltage (HIN, LIN \& SD)	$\mathrm{V}_{\text {ss }}$	V_{DD}	
T_{A}	Ambient temperature	-40	125	${ }^{\circ} \mathrm{C}$

\dagger Logic operational for V_{S} of -4 V to +500 V . Logic state held for V_{S} of -4 V to $-\mathrm{V}_{\mathrm{BS}}$. (Please refer to the Design Tip DT97-3 for more details).
$\dagger \dagger$ When $V_{D D}<5 \mathrm{~V}$, the minimum $\mathrm{V}_{S S}$ offset is limited to $-\mathrm{V}_{\mathrm{DD}}$.

Static Electrical Characteristics

$\mathrm{V}_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS},} \mathrm{V}_{\mathrm{DD}}\right)=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{S S}=C O M$ unless otherwise specified. The $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{T H}$ and I_{N} parameters are referenced to $V_{S S}$ and are applicable to all three logic input leads: HIN, LIN and SD. The V_{O}, and I_{0} parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min	Typ	Max	Units	Test Conditions
V_{IH}	Logic "1" input voltage	9.5	-	-	V	
V_{IL}	Logic "0" input voltage	-	-	6.0		
V_{OH}	High level output voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{0}$	-	-	1.4		$\mathrm{I}_{0}=0 \mathrm{~A}$
V_{OL}	Low level output voltage, V_{0}	-	-	0.15		$\mathrm{I}_{0}=20 \mathrm{~mA}$
ILK	Offset supply leakage current	-	-	50	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=600 \\ \mathrm{~V} \end{gathered}$
$\mathrm{I}_{\text {QBS }}$	Quiescent $\mathrm{V}_{\text {BS }}$ supply current	-	125	230		
$\mathrm{l}_{\text {Qcc }}$	Quiescent V_{CC} supply current	-	180	340		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{DD}} \end{gathered}$
$\mathrm{I}_{\text {QDD }}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current	-	15	30		
$\mathrm{l}_{\mathrm{N}+}$	Logic "1" input bias current	-	20	40		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
1 N -	Logic "0" input bias current	-	-	5.0		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{V}_{\text {BSUV }+}$	V_{BS} supply undervoltage positive going threshold	7.5	8.6	9.7	V	
$\mathrm{V}_{\text {BSUV- }}$	$\mathrm{V}_{\text {BS }}$ supply undervoltage negative going threshold	7.0	8.2	9.4		
$\mathrm{V}_{\text {ccuv }+}$	$\mathrm{V}_{C C}$ supply undervoltage positive going threshold	7.4	8.5	9.6		
$\mathrm{V}_{\text {ccuv }}$	$\mathrm{V}_{\text {CC }}$ supply undervoltage negative going threshold	7.0	8.2	9.4		
l_{0}	Output high short circuit pulsed current	2.0	2.5	-	A	$\begin{gathered} V_{\mathrm{O}}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ \mathrm{PW} \leq 10 \text { us } \end{gathered}$
Io.	Output low short circuit pulsed current	2.0	2.5	-		$\begin{gathered} \mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \mathrm{PW} \leq 10 \text { us } \end{gathered}$

Dynamic Electrical Characteristics

$\mathrm{V}_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS},} \mathrm{V}_{\mathrm{DD}}\right)=15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{SS}}=\mathrm{COM}$ unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.

Symbol	Definition	Min	Typ	Max	Units	Test Conditions
$\mathrm{t}_{\text {on }}$	Turn-on propagation delay	-	130	200	ns	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$
$\mathrm{t}_{\text {off }}$	Turn-off propagation delay	-	120	190		$\mathrm{V}_{\mathrm{S}}=600 \mathrm{~V}$
$\mathrm{t}_{\text {sd }}$	Shutdown propagation delay	-	130	160		
t_{r}	Turn-on rise time	-	25	35		
t_{f}	Turn-off fall time	-	17	25		
MT	Delay matching, HS \& LS turn on/off	-	-	20		

Functional Block Diagram

Input/Output Pin Equivalent Circuit Diagrams

Lead Definitions

PIN	Symbol	
1	$V_{\text {DD }}$	Logic supply
2	HIN	Logic input for high-side gate driver output (HO), in phase
3	SD	Logic input for shutdown
4	LIN	Logic input for low-side gate driver output (LO), in phase
5	V $_{\text {SS }}$	Logic ground
6	LO	Low-side gate drive output
7	COM	Low-side return
8	NC	No Connection
9	$V_{C C}$	Low-side supply
10	NC	No Connection (pin removed)
11	NC	No Connection
12	V $_{\text {S }}$	High-side floating supply return
13	V $_{\text {B }}$	High-side floating supply
14	HO	High-side gate drive output
15	NC	No Connection (pin removed)
16	NC	No Connection

Lead Assignments

Application Information and Additional Details

Figure 1: Input/Output Timing Diagram

Figure 2: Floating Supply Voltage Transient Test Circuit

Figure 3: Switching Time Test Circuit

Figure 4: Switching Time Waveform Definitions

Figure 5: Shutdown Waveform Definitions

Figure 6: Delay Matching Waveform Definitions

IOR Rectifier

Parameter Temperature Trends

Figure 7A. Turn-On Time vs. Temperature

$V_{D D}$ Supply Voltage (V)
Figure 7C. Turn-On Time vs. VDD Supply Voltage

Figure 8B. Turn-Off Time vs. Supply Voltage

Figure 7B. Turn-On Time vs. Supply Voltage

Figure 8A. Turn-Off Time vs. Temperature

Figure 8C. Turn-Off Time vs. VdD Supply Voltage

Figure 9A. Shutdown Time vs. Temperature

Figure 9C. Shutdown Time
vs. Vdd Supply Voltage

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 9B. Shutdown Time vs. Supply Voltage

Figure 10A. Turn-On Rise Time
vs. Temperature

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12B. Logic "1" Input Threshold vs. Voltage

Figure 13B. Logic "0" Input Threshold vs. Voltage - . .

Figure 12A. Logic "1" Input Threshold
vs. Temperature

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 14A. High Level Output Voltage vs. Temperature ($\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$)

Figure 14B. High Level Output Voltage
vs. Supply Voltage ($\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$)

Figure 15B. Low Level Output vs. Supply Voltage

Figure 16B. Offset Supply Current vs. Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 16A. Offset Supply Current vs. Temperature

Figure 17A. VBs Supply Current vs. Temperature

Figure 17B. VBs Supply Current vs. Voltage

Figure 18B. Vcc Supply Current vs. Voltage

Figure 19B. VDD Supply Current vs. VdD Voltage

Figure 18A. Vcc Supply Current vs. Temperature

Figure 19A. VDD Supply Current
vs. Temperature

Figure 20A. Logic "1" Input Current
vs. Temperature

Figure 20B. Logic "1" Input Current
vs. Vdd Voltage

Figure 21B. Logic "0" Input Bias Current vs. Voltage

Figure 23. Vbs Undervoltage (-)
vs. Temperature

Figure 21A. Logic "0" Input Bias Current
vs. Temperature

Figure 22. $V_{B S}$ Undervoltage (+) vs. Temperature

Figure 24. Vcc Undervoltage (+) vs. Temperature

Figure 25. Vcc Undervoltage (-) vs. Temperature

Figure 26B. Output Source Current vs. Voltage

Figure 27B. Output Sink Current vs. Voltage

Figure 26A. Output Source Current
vs. Temperature

Figure 27A. Output Sink Current
vs. Temperature

Figure 28. IRS2110/IRS2113 TJ vs. Frequency (IRFBC20) $R_{\text {GATE }}=33 \Omega, V_{C C}=15 \mathrm{~V}$

Figure 29. IRS2110/IRS2113 TJ vs. Frequency (IRFBC30) RGATE $=22 \Omega, V_{C C}=15 \mathrm{~V}$

Figure 31. IRS2110/IRS2113 T_{J} vs. Frequency (IRFPE50) R $\mathrm{RATE}=10 \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$

Figure 33. IRS2110S/IRS2113S T_{J} vs. Frequency (IRFBC30) $\mathrm{R}_{\mathrm{GATE}}=22 \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$

Figure 30. IRS2110/IRS2113 T_{J} vs. Frequency (IRFBC40) $\mathrm{R}_{\mathrm{GATE}}=15 \mathrm{\Omega}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$

Figure 32. IRS2110S/IRS2113S T_{J} vs. Frequency (IRFBC20) $R_{G A T E}=33 \Omega, V_{C C}=15 \mathrm{~V}$

Figure 34. IRS2110S/IRS2113S T_{J} vs. Frequency (IRFBC40) $\mathrm{R}_{\mathrm{GATE}}=15 \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$

Figure 35. IRS2110S/IRS2113S T_{J} vs. Frequency (IRFPE50) $R_{G A T E}=10 \Omega, V_{C C}=15 \mathrm{~V}$

Figure 37. Maximum Vss Positive Offset vs. Vcc Supply Voltage

Figure 36. Maximum V_{s} Negative Offset vs. VBs Supply Voltage

Package Details: MLPQ 4x4 -16L

$\begin{aligned} & S \\ & Y \\ & M \\ & M \\ & B \\ & \mathrm{~B} \end{aligned}$	VGGD-10					
	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.90	1.00	. 032	. 035	. 039
A1	0.00	0.02	0.05	. 000	. 0008	. 0019
A3	0.20 REF			. 008 REF		
b	0.18	0.25	0.30	. 007	. 010	. 012
D2	1.78	1.88	1.98	. 070	. 074	. 078
D3	0.73 REF			. 029 REF		
D4	1.40 REF			. 055 REF		
D	4.00 BSC			.157 BSC		
E	4.00 BSC			. 157 ESC		
E4	1.40 REF			. 055 REF		
E3	0.73 REF			. 029 REF		
E2	1.78	1.88	1.98	. 070	. 074	. 078
L	0.30	0.40	0.50	. 012	. 016	. 020
e	0.50 PITCH			. 020 PITCH		
N	16			16		
ND	4			4		
NE	4			4		
aaa	0.15			. 0059		
bbb	0.10			. 0039		
ccc	0.10			. 0039		
did	0.05			. 0019		

Tape and Reel Details: MLPQ 4x4

CARRIER TAPE DIMENSION FOR MLPQ4X 4 V				
Code	Meric		Imperal	
	Min	Max	Min	Max
A	7.90	8.10	0.311	0358
B	3.90	4.10	0.154	0.161
C	11.70	1230	0.461	0.484
D	5.45	5.55	0.215	0219
E	4.25	4.45	0,168	0.176
F	4.25	4.45	0.163	0.176
G	1.50	n/a	0.069	nía
H	1:50	160	0.069	0053

Code	Merric		Imperial	
	Mir	Max	Min	Max
A	329.60	330.25	12.976	13.007
B	20.95	21.45	0.824	0.844
C	12.80	13.20	0.503	0.519
D	1.96	2.45	0.767	0.096
E	88.00	102.00	3.858	4.015
F	n/a	18.40	nia	0.724
G	14,50	17.10	0.570	0.673
H	12.40	14.40	0.488	0.586

Part Marking Information:

Ordering Information

Base Part Number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
IRS2113	MLPQ 4x4-16L	Tube/Bulk	92	IRS2113MPBF
		Tape and Reel	3,000	IRS2113MTRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center
http://www.irf.com/technical-info/
WORLD HEADQUARTERS:
233 Kansas St., El Segundo, California 90245

> Tel: (310) 252-7105

Revision History

Date	Comment
$09 / 24 / 09$	Initial conversion from SO package style data sheet
$03 / 24 / 2010$	Included qual info page
$08 / 08 / 2011$	Update the package details
$02 / 08 / 2012$	Update pin assignment drawing

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

International Rectifier:
IRS2113MTRPBF

