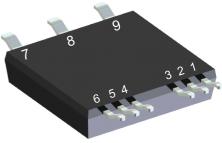


Sonic Fast Recovery Diode

1200 V V_{RRM}


I_{DAV} 60 A

160 ns t_{rr}

High Performance Fast Recovery Diode Low Loss and Soft Recovery 3~ Rectifier Bridge

Part number

DHG60U1200LB

Backside: isolated

F1 E72873

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- · Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

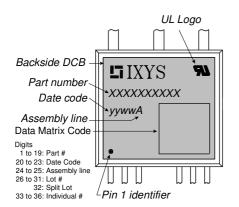
The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments; the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified


20131211b

Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	$T_{VJ} = 25^{\circ}C$			1200	V	
V _{RRM}	max. repetitive reverse blocking v	repetitive reverse blocking voltage				1200	٧
I _R	reverse current, drain current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			50	μΑ
		$V_R = 1200 \text{ V}$	$T_{VJ} = 125^{\circ}C$			0.5	mΑ
V _F	forward voltage drop	I _F = 20 A	$T_{VJ} = 25^{\circ}C$			1.99	V
		$I_F = 60 \text{ A}$				1.93	٧
		I _F = 20 A	T _{VJ} = 125°C			2.30	٧
		$I_F = 60 \text{ A}$				3.21	٧
I _{DAV}	bridge output current	$T_c = 80^{\circ}C$	$T_{VJ} = 150$ °C			60	Α
		rectangular $d = \frac{1}{3}$					
V _{F0}	threshold voltage		T _{VJ} = 150°C			1.35	V
r _F	slope resistance for power loss calculation only					29	mΩ
R_{thJC}	thermal resistance junction to case				1.2	K/W	
R _{thCH}	thermal resistance case to heatsir			0.40		K/W	
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			100	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			200	Α
CJ	junction capacitance	$V_R = 600 \text{V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		11		pF
I _{RM}	max. reverse recovery current	\ \	T _{VJ} = 25 °C		19		Α
		$I_F = 20 \text{ A}; V = 600 \text{ V}$	$T_{VJ} = 125$ °C		25		Α
t _{rr}	reverse recovery time	-d _F /dt = 600 A/μs	$T_{VJ} = 25 ^{\circ}\text{C}$		160		ns
		,	$T_{VJ} = 125$ °C		280		ns

Package SMPD					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				100	Α	
T _{VJ}	virtual junction temperature			-55		150	°C	
T _{op}	operation temperature			-55		125	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	N	
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	1.6			mm	
$d_{\text{Spb/Apb}}$			terminal to backside	4.0			mm	
V _{ISOL}	ionation voltage	t = 1 second		3000			٧	
.002		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA	2500			٧	

Part description

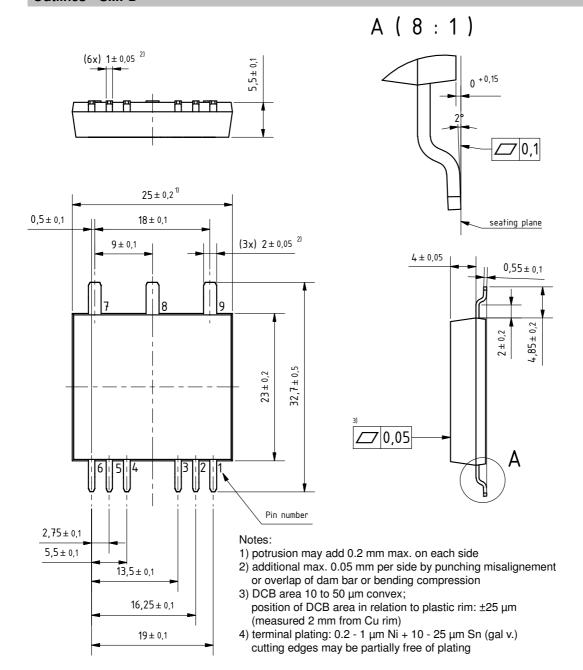
D = Diode

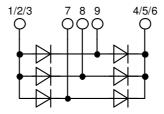
H = Sonic Fast Recovery Diode

G = extreme fast

60 = Current Rating [A]

U = 3~ Rectifier Bridge 1200 = Reverse Voltage [V]


LB = SMPD-B


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG60U1200LB	DHG60U1200LB	Blister	45	513421
Alternative	DHG60U1200LB-TRR	DHG60U1200LB	Tape & Reel	200	513414

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$	R _o -	Fast Diode		
V _{0 max}	threshold voltage	1.35		V
R_{0max}	slope resistance *	27		$m\Omega$

Outlines SMPD

Fast Diode

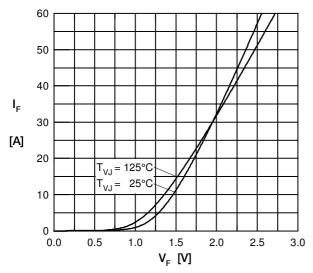


Fig. 7 Typ. Forward current versus V_F

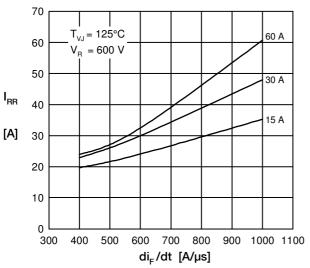


Fig. 9 Typ. peak reverse current I_{RM} vs. di/dt

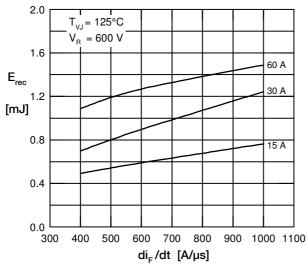


Fig.11 Typ. recovery energy E_{rec} versus di/dt

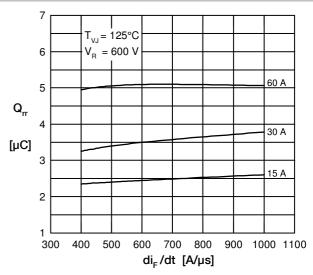


Fig. 8 Typ. reverse recov.charge Q_{rr} vs. di/dt

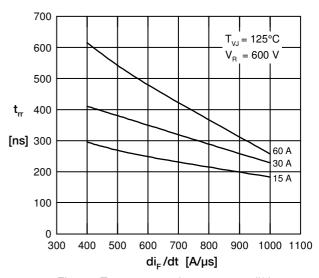


Fig. 10 Typ. recovery time $t_{\rm rr}$ versus di/dt

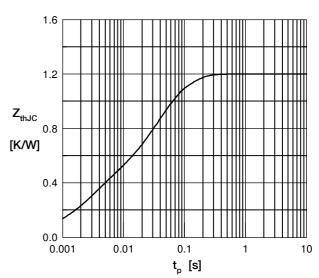


Fig. 12 Typ. transient thermal impedance

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

DHG60U1200LB