## General Description

The MAX2828/MAX2829 single-chip, RF transceiver ICs are designed specifically for OFDM 802.11 WLAN applications. The MAX2828 is designed for single-band 802.11a applications covering world-band frequencies of 4.9 GHz to 5.875 GHz . The MAX2829 is designed for dual-band $802.11 \mathrm{a} / \mathrm{g}$ applications covering world-bands of 2.4 GHz to 2.5 GHz and 4.9 GHz to 5.875 GHz . The ICs include all circuitry required to implement the RF transceiver function, providing a fully integrated receive path, transmit path, VCO, frequency synthesizer, and baseband/control interface. Only the PA, RF switches, RF bandpass filters (BPF), RF baluns, and a small number of passive components are needed to form the complete RF front-end solution.
Each IC completely eliminates the need for external SAW filters by implementing on-chip monolithic filters for both the receiver and transmitter. The baseband filtering and the $R x / T x$ signal paths are optimized to meet the $802.11 \mathrm{a} / \mathrm{g}$ IEEE standards and cover the full range of the required data rates $(6,9,12,18,24,36,48$, and 54 Mbps for OFDM; 1, 2, 5.5, and 11Mbps for CCK/DSSS), at receiver sensitivity levels up to 10dB better than $802.11 \mathrm{a} / \mathrm{g}$ standards. The MAX2828/MAX2829 transceivers are available in the small 56-pin, exposed paddle thin QFN package.

## Applications

Single-/Dual-Band 802.11a/b/g Radios 4.9GHz Public Safety Radios 2.4GHz/5GHz MIMO and Smart Antenna Systems

Pin Configurations


Features

- World-Band Operation

MAX2828: 4.9 GHz to 5.875 GHz (802.11a)
MAX2829: 2.4 GHz to 2.5 GHz and 4.9 GHz to $5.875 \mathrm{GHz}(802.11 \mathrm{a} / \mathrm{b} / \mathrm{g})$

- Best-In-Class Transceiver Performance
-75 dBm Rx Sensitivity at 54Mbps (802.11g)
-46dB (802.11g)/-51dB (802.11a) Tx Sideband Suppression
1.5\% (802.11g) and 2\% (802.11a) Tx EVM
$-100 \mathrm{dBc} / \mathrm{Hz}(802.11 \mathrm{~g}) /-95 \mathrm{dBc} / \mathrm{Hz}$ (802.11a) LO Phase Noise
Programmable Baseband Lowpass Filters
Integrated PLL with 3-Wire Serial Interface
93dB (802.11g)/97dB (802.11a) Receiver GainControl Range
200ns Rx I/Q DC Settling
60dB Dynamic Range Rx RSSI
30dB Tx Power-Control Range
Tx/Rx I/Q Error Detection
I/Q Analog Baseband Interface for Tx and Rx Digital Mode Selection (Tx, Rx, Standby, and Power Down)
Supports Both Serial and Parallel Gain Control
- MIMO and Smart Antenna Compatibility

Coherent LO Phase Among Multiple Transceivers

- Support 40MHz Channel Bandwidth (Turbo Mode)
- Single +2.7V to +3.6V Supply
- 1رA Low-Power Shutdown Mode
- Small 56-Pin TQFN Package (8mm x 8mm)

Ordering Information

| PART | TEMP RANGE | PIN-PACKAGE |
| :---: | :--- | :--- |
| MAX2828 ETN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 56 TQFN-EP* $($ T5688-2) |
| MAX2829ETN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 56 TQFN-EP* $($ T5688-2) |

${ }^{\star} E P=$ Exposed paddle.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

# MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs 

## ABSOLUTE MAXIMUM RATINGS

VCC, $^{\text {TXRFH_, TXRFL_ to GND..... }}$
RXRFH, RXRFL, TXBBI_, TXBBQ_, ROSC, RXBBI_, RXBBQ_,
RSSI, PABIAS, VREF, CPOUT, RXENA, TXENA, SHDN, $\overline{\mathrm{CS}}$, SCLK, DIN, B_, RXHP, LD, RBIAS,
BYPASS to GND

.-0.3 V to $(\mathrm{VCC}+0.3 \mathrm{~V})$
RXBBI_, RXBBQ_, RSSI, PABIAS, VREF, CPOUT,
LD Short-Circuit Duration.

## n...

10s
CAUTION! ESD SENSITIVE DEVICE

RF Input Power ............................................................... +10 dBm
Continuous Power Dissipation ( $\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )
$56-P i n$ Thin QFN (derate $31.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) $\ldots .2500 \mathrm{~mW}$ Operating Temperature Range .......................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .$+150^{\circ} \mathrm{C}$
Storage Temperature Range ........................... $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) ................................. $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Rx} / \mathrm{Tx}$ set to maximum gain, $\mathrm{R}_{\mathrm{BI}} \mathrm{AS}=11 \mathrm{k} \Omega$, no signal at RF inputs, all RF inputs and outputs terminated into $50 \Omega$, receiver baseband outputs are open, no signal applied to $T x$ I/Q BB inputs in Tx mode, $\mathrm{f}_{\text {REFOSC }}=40 \mathrm{MHz}$, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)


## MAX2828/MAX2829 Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

## DC ELECTRICAL CHARACTERISTICS (continued)

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{Rx} / \mathrm{Tx}$ set to maximum gain, $\mathrm{R}_{\mathrm{BI}} \mathrm{AS}=11 \mathrm{k} \Omega$, no signal at RF inputs, all RF inputs and outputs terminated into $50 \Omega$, receiver baseband outputs are open, no signal applied to $T \times I / Q B B$ inputs in Tx mode, $f_{\text {fEFOSC }}=40 \mathrm{MHz}$, registers set to default settings and corresponding test mode, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

| PARAMETERS | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rx I/Q Output Common-Mode Voltage Variation | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$ ) |  | -25 |  | mV |
|  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$ ) |  | 20 |  |  |
| Tx Baseband Input CommonMode Voltage Operating Range |  | 0.9 |  | 1.3 | V |
| Tx Baseband Input Bias Current |  |  |  | 13 | $\mu \mathrm{A}$ |
| Reference Voltage Output | -1 mA < IOUT < + 1 mA |  | 1.2 |  | V |
| Digital Input-Voltage High, $\mathrm{V}_{\mathrm{IH}}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$ |  |  | V |
| Digital Input-Voltage Low, $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.4 | V |
| Digital Input-Current High, $\mathrm{I}_{\mathrm{IH}}$ |  | -1 |  | +1 | $\mu \mathrm{A}$ |
| Digital Input-Current Low, IIL |  | -1 |  | +1 | $\mu \mathrm{A}$ |
| LD Output-Voltage High, VOH | Sourcing 100 ${ }^{\text {A }}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$ |  |  | V |
| LD Output-Voltage Low, VOL | Sinking 100 ${ }^{\text {A }}$ |  |  | 0.4 | V |

## AC ELECTRICAL CHARACTERISTICS—802.11g Rx Mode (MAX2829)

(MAX2829 evaluation kit: $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{I}}=2.437 \mathrm{GHz}$; receiver baseband $\mathrm{I} / \mathrm{Q}$ outputs at $112 \mathrm{mV} \mathrm{RMS}^{(-19 \mathrm{dBV})}$ ), $\mathrm{fREFOSC}=40 \mathrm{MHz}$, $\overline{S H D N}=$ RXENA $=\overline{C S}=$ high, RXHP $=$ TXENA $=$ SCLK $=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega$, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Tables 1, 2, 3)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RECEIVER SECTION: LNA RF INPUT TO BASEBAND I/Q OUTPUTS |  |  |  |  |  |  |
| RF Input Frequency Range |  |  | 2.412 |  | 2.500 | GHz |
| RF Input Return Loss | With $50 \Omega$ external match | LNA high-gain mode ( $\mathrm{B} 7: \mathrm{B6}=11$ ) |  | -22 |  | dB |
|  |  | LNA medium-gain mode $(\mathrm{B} 7: \mathrm{B6} 6=10)$ | -24 |  |  |  |
|  |  | LNA low-gain mode (B7:B6 = 0X) |  | -12 |  |  |
| Total Voltage Gain | Maximum gain, $B 7: B 1=1111111$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 87 | 94 |  | dB |
|  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1) | 85 |  |  |  |
|  | Minimum gain, B7:B1 $=0000000$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 1 | 5.5 |  |
| RF Gain Steps | From high-gain mode ( $\mathrm{B} 7: \mathrm{B6}=11$ ) to medium-gain mode ( $\mathrm{B} 7: \mathrm{B6}=10$ ) (Note 3) |  |  | -15.5 |  | dB |
|  | From high-gain mode (B7:B6 = 11) to low-gain mode (B7:B6 = OX) (Note 3) |  |  | -30.5 |  |  |
| Gain Variation Over RF Band | $\mathrm{f}_{\mathrm{RF}}=2.412 \mathrm{GHz}$ to 2.5 GHz |  |  |  | 3 | dB |
| Baseband Gain Range | From maximum baseband gain (B5:B1 = 11111) to minimum baseband gain $(B 5: B 1=00000)$ |  |  | 62 |  | dB |

## MAX2828/MAX2829

Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—802.11g Rx Mode (MAX2829) (continued)

(MAX2829 evaluation kit: $V_{C C}=+2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=2.437 \mathrm{GHz}$; receiver baseband $\mathrm{I} / \mathrm{Q}$ outputs at 112 mV RMS $(-19 \mathrm{dBV})$, $\mathrm{f}_{\text {REFOSC }}=40 \mathrm{MHz}$, $\overline{S H D N}=$ RXENA $=\overline{C S}=$ high, RXHP $=$ TXENA $=$ SCLK $=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega$, registers set to default settings and corresponding test mode, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Tables 1, 2, 3)

| PARAMETER | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DSB Noise Figure | Voltage gain $\geq 65 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  | 3.5 |  | dB |
|  | Voltage gain $=50 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  | 4 |  |  |
|  | Voltage gain $=45 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=10$ |  | 16 |  |  |
|  | Voltage gain $=15 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=0 \mathrm{X}$ |  | 36 |  |  |
| Output P-1dB | Voltage gain $=90 \mathrm{~dB}$, with $\mathrm{B7}: \mathrm{B6}=11$ |  | 3.2 |  | VP-P |
| Out-of-Band Input IP3 | -35dBm jammers at 40 MHz and 78 MHz offset; based on IM3 at 2 MHz | Voltage gain $=60 \mathrm{~dB}$, with $\mathrm{B7}: \mathrm{B6}=11$ | -10 |  | dBm |
|  |  | Voltage gain $=45 \mathrm{~dB}$, <br> with $B 7: B 6=10$ | -2 |  |  |
|  |  | Voltage gain $=40 \mathrm{~dB}$, <br> with $\mathrm{B} 7: \mathrm{B6}=0 \mathrm{X}$ | 21 |  |  |
| In-Band Input P-1dB | Voltage gain $=40 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  | -29 |  | dBm |
|  | Voltage gain $=25 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=10$ |  | -14 |  |  |
|  | Voltage gain $=5 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=0 \mathrm{X}$ |  | 2 |  |  |
| In-Band Input IP3 | Tones at 7 MHz and $8 \mathrm{MHz}, \mathrm{IM} 3$ at 6 MHz and $9 \mathrm{MHz}, \mathrm{PIN}=$ -40dBm per tone | Voltage gain $=40 \mathrm{~dB}$, with $B 7: B 6=11$ | -17 |  | dBm |
|  |  | Voltage gain $=25 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=10$ | -5 |  |  |
|  |  | Voltage gain $=5 \mathrm{~dB}$, with $\mathrm{B7}: \mathrm{B6}=0 \mathrm{X}$ | 14 |  |  |
| I/Q Phase Error | $\mathrm{B} 7: \mathrm{B} 1=1101110,1 \sigma$ variation |  | $\pm 0.5$ |  | degrees |
| I/Q Gain Imbalance | $\mathrm{B} / \mathrm{B} 1=1101110,1 \sigma$ variation |  | $\pm 0.1$ |  | dB |
| Tx-to-Rx Conversion Gain for Rx I/Q Calibration | B7:B1 $=0010101$ (Note 4) |  | -4 |  | dB |
| I/Q Static DC Offset | $\mathrm{RXHP}=1, \mathrm{~B} 7: \mathrm{B} 1=1101110,1 \sigma$ variation |  | $\pm 2$ |  | mV |
| I/Q DC Droop | After switching RXHP to $0, \mathrm{D} 2=0$ (see the $R X$ Control/RSSI Register Definition section) |  | $\pm 1$ |  | $\mathrm{mV} / \mathrm{ms}$ |
| RF Gain-Change Settling Time | Gain change from high gain to medium gain, high gain to low gain, or medium gain to low gain; gain settling to within $\pm 2 \mathrm{~dB}$ of steady state |  | 0.4 |  | $\mu \mathrm{s}$ |
| Baseband VGA Settling Time | Gain change from B5 gain settling to within | $\text { B1 = } 10111 \text { to B5:B1 = 00111; }$ <br> $\pm 2 \mathrm{~dB}$ of steady state | 0.1 |  | $\mu \mathrm{s}$ |
| Rx I/Q Output Load Impedance | Minimum differential resistance |  | 10 |  | k $\Omega$ |
|  | Maximum differential capacitance |  | 8 |  | pF |
| Spurious Signal Emissions at LNA Input | $\mathrm{RF}=1 \mathrm{GHz}$ to 26.5 GHz |  | -67 |  | dBm |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS-802.11g Rx Mode (MAX2829) (continued)

(MAX2829 evaluation kit: $V_{C C}=+2.7 \mathrm{~V}, \mathrm{fIN}_{\mathrm{I}}=2.437 \mathrm{GHz}$; receiver baseband I/Q outputs at 112 mV RMS $(-19 \mathrm{dBV})$, $\mathrm{fREFOSC}=40 \mathrm{MHz}$, $\overline{S H D N}=$ RXENA $=\overline{C S}=$ high, RXHP $=$ TXENA $=$ SCLK $=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega$, registers set to default settings and corresponding test mode, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Tables 1, 2, 3)

| PARAMETER | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RECEIVER BASEBAND FILTERS |  |  |  |  |  |
| Baseband -3dB Corner Frequency | (See the Lowpass Filter Register section) | rowband mode | 7.5 |  | MHz |
|  |  | Nominal mode | 9.5 |  |  |
|  |  | Turbo mode 1 | 14 |  |  |
|  |  | Turbo mode 2 | 18 |  |  |
| Baseband Filter Rejection (Nominal Mode) | $\mathrm{f}_{\text {BASEBAND }}=15 \mathrm{MHz}$ |  | 20 |  | dB |
|  | fBASEBAND $=20 \mathrm{MHz}$ |  | 39 |  |  |
|  | fBASEBAND $>40 \mathrm{MHz}$ |  | 84 |  |  |
| RSSI |  |  |  |  |  |
| RSSI Minimum Output Voltage | RXHP = 1, low range (D11 = 0, see the Rx Control/RSSI Register Definition section) |  | 0.5 |  | V |
|  | RXHP = 1, high range (D11 = 1, see the Rx Control/RSSI Register Definition section) |  | 0.52 |  |  |
| RSSI Maximum Output Voltage | RXHP $=1$, low range (D11 $=0$, see the $R \times$ Control/RSSI Register Definition section) |  | 2 |  | V |
|  | RXHP $=1$, high range (D11 $=1$, see the Rx Control/RSSI Register Definition section) |  | 2.5 |  |  |
| RSSI Slope | RXHP $=1$, low range (D11 $=0$, see the $R \times$ Control/RSSI Register Definition section) |  | 22.5 |  | mV/dB |
|  | RXHP $=1$, high range (D11 $=1$, see the $R \times$ Control/RSSI Register Definition section) |  | 30 |  |  |
| RSSI Output Settling Time | To within 3dB of steady state | +40dB signal step | 0.2 |  | $\mu \mathrm{s}$ |
|  |  | -40dB signal step | 0.7 |  |  |

## MAX2828/MAX2829

Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—802.11a Rx Mode (MAX2828/MAX2829)

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}, \mathrm{fIN}=5.25 \mathrm{GHz}$; receiver baseband I/Q outputs at $112 \mathrm{mV} \mathrm{V}_{\mathrm{RMS}}(-19 \mathrm{dBV})$, fREFOSC $=$ $40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\mathrm{RXENA}=\overline{\mathrm{CS}}=$ high, RXHP $=$ TXENA $=$ SCLK $=\mathrm{DIN}=10 \mathrm{w}$, RBIAS $=11 \mathrm{k} \Omega$, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Tables 1, 2, 3)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RECEIVER SECTION: LNA RF INPUT TO BASEBAND I/Q OUTPUTS |  |  |  |  |  |  |
| RF Input Frequency Range | 802.11a low-band mode |  | 4.900 |  | 5.350 | GHz |
|  | 802.11a high-band mode |  | 5.470 |  | 5.875 |  |
| RF Input Return Loss | With $50 \Omega$ external match | LNA high-gain mode ( $B 7: B 6=11$ ) |  | -15 |  | dB |
|  |  | LNA medium-gain mode $(B 7: B 6=10)$ |  | -11 |  |  |
|  |  | LNA low-gain mode (B7:B6 = 0X) |  | -7 |  |  |
| Total Voltage Gain | Maximum gain, $B 7: B 1=1111111$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 91 | 97 |  | dB |
|  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 1) | 88 |  |  |  |
|  | Minimum gain, $\mathrm{B7}: \mathrm{B} 1=0000000$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0 | 3 |  |
| RF Gain Steps | From high-gain mode $(\mathrm{B} 7: \mathrm{B} 6=11)$ to medium-gain mode (B7:B6 = 10) (Note 3) |  |  | -19 |  | dB |
|  | From high-gain mode ( $\mathrm{B} 7: \mathrm{B} 6=11$ ) to low-gain mode (B7:B6 = 0X) (Note 3) |  |  | -34.5 |  |  |
| Gain Variation Relative to$5.25 \mathrm{GHz}$ | $\mathrm{fRF}^{\text {R }}=4.9 \mathrm{GHz}$ |  |  | -0.3 |  | dB |
|  | $\mathrm{fRF}=5.35 \mathrm{GHz}$ |  |  | 0.4 |  |  |
|  | $\mathrm{frF}^{\text {R }}=5.875 \mathrm{GHz}$ |  |  | -4 |  |  |
| Baseband Gain Range | From maximum baseband gain $(\mathrm{B} 5: \mathrm{B} 1=11111)$ to minimum baseband gain $(B 5: B 1=00000)$ |  |  | 62 |  | dB |
| DSB Noise Figure | Voltage gain $\geq 65 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  |  | 4.5 |  | dB |
|  | Voltage gain $=50 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  |  | 4.8 |  |  |
|  | Voltage gain $=45 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=10$ |  |  | 15 |  |  |
|  | Voltage gain $=15 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=0 \mathrm{X}$ |  |  | 36 |  |  |
| Output P-1dB | Voltage gain $=90 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  |  | 3.2 |  | VP-P |
| Out-of-Band Input IP3 | -35 dBm jammers at 40 MHz and 78 MHz offset; based on IM3 at 2 MHz | Voltage gain $=60 \mathrm{~dB}$, with $B 7: B 6=11$ |  | -15 |  | dBm |
|  |  | Voltage gain $=45 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B} 6=10$ |  | 0.5 |  |  |
|  |  | Voltage gain $=40 \mathrm{~dB}$, with $\mathrm{B7}: \mathrm{B6}=0 \mathrm{X}$ |  | 20 |  |  |
| In-Band Input P-1dB | Voltage gain $=35 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=11$ |  |  | -32 |  | dBm |
|  | Voltage gain $=20 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=10$ |  |  | -12 |  |  |
|  | Voltage gain $=5 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=0 \mathrm{X}$ |  |  | 3 |  |  |

## MAX2828/MAX2829 Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—802.11a Rx Mode (MAX2828/MAX2829) (continued)

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}, \mathrm{fIN}=5.25 \mathrm{GHz}$; receiver baseband I/Q outputs at $112 \mathrm{mV} \mathrm{V}_{\mathrm{RMS}}(-19 \mathrm{dBV})$, fREFOSC $=$ $40 \mathrm{MHz}, \overline{S H D N}=$ RXENA $=\overline{\mathrm{CS}}=$ high, RXHP $=$ TXENA $=$ SCLK $=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega$, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Tables 1, 2, 3)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In-Band Input IP3 | Tones at 7 MHz and $8 \mathrm{MHz}, \mathrm{IM} 3$ at 6 MHz and $9 \mathrm{MHz}, \mathrm{PIN}=$ -40 dBm per tone | Voltage gain $=35 \mathrm{~dB}$, with $B 7: B 6=11$ |  | -24 |  | dBm |
|  |  | Voltage gain $=20 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=10$ |  | -5 |  |  |
|  |  | Voltage gain $=5 \mathrm{~dB}$, with $\mathrm{B} 7: \mathrm{B6}=0 \mathrm{X}$ |  | 13 |  |  |
| I/Q Phase Error | $B 7: B 1=1101110,1 \sigma$ variation |  |  | $\pm 0.4$ |  | degrees |
| I/Q Gain Imbalance | $\mathrm{B7}: \mathrm{B} 1=1101110,1 \sigma$ variation |  |  | $\pm 0.1$ |  | dB |
| Tx-to-Rx Conversion Gain for Rx I/Q Calibration | B7:B1 $=0001111$ (Note 4) |  |  | 0 |  | dB |
| I/Q Static DC Offset | $\mathrm{RXHP}=1, \mathrm{~B} 7: \mathrm{B} 1=1101110,1 \sigma$ variation |  |  | $\pm 2$ |  | mV |
| I/Q DC Droop | After switching RXHP to 0, D2 $=0$ (see the Rx Control/RSSI Register Definition section) |  |  | $\pm 1$ |  | mV/ms |
| RF Gain-Change Settling Time | Gain change from high gain to medium gain, high gain to low gain, or medium gain to low gain; gain settling to within $\pm 2 \mathrm{~dB}$ of steady state |  |  | 0.4 |  | $\mu \mathrm{s}$ |
| Baseband VGA Settling Time | Gain change from B gain settling to within | $\text { B1 = } 10111 \text { to B5:B1 = 00111; }$ <br> $\pm 2 d B$ of steady state |  | 0.1 |  | $\mu \mathrm{s}$ |
| Rx I/Q Output Load Impedance | Minimum differential resistance |  |  | 10 |  | k $\Omega$ |
|  | Maximum differential capacitance |  |  | 8 |  | pF |
| Spurious Signal Emissions at LNA input | $\mathrm{RF}=1 \mathrm{GHz}$ to 26.5 GHz |  |  | -50 |  | dBm |
| RECEIVER BASEBAND FILTERS |  |  |  |  |  |  |
| Baseband -3dB Corner Frequency | (See the Lowpass Filter Register Definition section) | Narrow-band mode |  | 7.5 |  | MHz |
|  |  | Nominal mode |  | 9.5 |  |  |
|  |  | Turbo mode 1 |  | 14 |  |  |
|  |  | Turbo mode 2 |  | 18 |  |  |
| Baseband Filter Rejection (Nominal Mode) | fBASEBAND $=15 \mathrm{MHz}$ |  |  | 20 |  | dB |
|  | fBASEBAND $=20 \mathrm{MHz}$ |  |  | 39 |  |  |
|  | fBASEBAND $>40 \mathrm{MHz}$ |  |  | 80 |  |  |

## MAX2828/MAX2829

Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—802.11a Rx Mode (MAX2828/MAX2829) (continued)

(MAX2828/MAX2829 evaluation kits: $V_{C C}=+2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=5.25 \mathrm{GHz}$; receiver baseband I/Q outputs at 112 mV RMS $(-19 \mathrm{dBV})$, fREFOSC $=$ $40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\mathrm{RXENA}=\overline{\mathrm{CS}}=$ high, RXHP $=$ TXENA $=$ SCLK $=\mathrm{DIN}=10 \mathrm{w}$, RBIAS $=11 \mathrm{k} \Omega$, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Tables 1, 2, 3)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSSI |  |  |  |  |  |  |
| RSSI Minimum Output Voltage | RXHP = 1, low range (D11 = 0, see the Rx Control/RSSI Register Definition section) |  |  | 0.5 |  | V |
|  | RXHP = 1, high range (D11 = 1, see the Rx Control/RSSI Register Definition section) |  |  | 0.52 |  |  |
| RSSI Maximum Output Voltage | RXHP = 1, low range (D11 = 0, see the Rx Control/RSSI Register Definition section) |  |  | 2 |  | V |
|  | RXHP = 1, high range (D11 = 1, see the Rx Control/RSSI Register Definition section) |  |  | 2.5 |  |  |
| RSSI Slope | RXHP = 1, low range (D11 = 0, see the Rx Control/RSSI Register Definition section) |  |  | 22.5 |  | $\mathrm{mV} / \mathrm{dB}$ |
|  | RXHP = 1, high range (D11 = 1, see the Rx Control/RSSI Register Definition section) |  |  | 30 |  |  |
| RSSI Output Settling Time | To within 3dB of steady state | +40dB signal step |  | 0.2 |  | $\mu \mathrm{s}$ |
|  |  | -40dB signal step |  | 0.7 |  |  |

## AC ELECTRICAL CHARACTERISTICS—802.11g Tx Mode (MAX2829)

(MAX2829 evaluation kit: $\mathrm{V}_{C C}=+2.7 \mathrm{~V}$, fout $=2.437 \mathrm{GHz}$, fREFOSC $=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ TXENA $=\overline{\mathrm{CS}}=$ high, RXENA $=$ SCLK $=$ DIN $=$ low, RBIAS $=11 \mathrm{k} \Omega$, 100 mV RMS sine and cosine signal (or 100 mV RMS, 54 Mbps IEEE $802.11 \mathrm{~g} \mathrm{I} / \mathrm{Q}$ signals wherever OFDM is mentioned) applied to baseband $I / Q$ inputs of transmitter, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Table 4)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRANSMIT SECTION: Tx BASEBAND I/Q INPUTS TO RF OUTPUTS |  |  |  |  |  |  |
| RF Output Frequency Range, frF |  |  | 2.412 |  | 2.500 | GHz |
| Output Power | 54Mbps 802.11g OFDM signal | 1.5\% EVM |  | -2.5 |  | dBm |
|  |  | $\mathrm{B} 6: \mathrm{B} 1=111011$ |  | -4.5 |  |  |
| Output Power (CW) | $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} V_{\text {RMS }}$ at 1 MHz I/Q CW signal, $\mathrm{B} 6: \mathrm{B} 1=$ 111111 |  |  | -2 |  | dBm |
| Output Power Range | $\mathrm{B} 6: \mathrm{B} 1=111111$ to $\mathrm{B6}: \mathrm{B} 1=000000$ |  |  | 30 |  | dB |
| Carrier Leakage | Without DC offset cancellation |  |  | -27 |  | dBc |
| Unwanted Sideband Suppression | Uncalibrated |  |  | -46 |  | dBc |
| Tx Output ACP | Measured with 1 MHz resolution bandwidth at 22 MHz offset from channel center (B6:B1 = 111011), OFDM signal |  |  | -69 |  | dBm/ $\mathrm{MHz}$ |
| RF Output Return Loss | With external $50 \Omega$ match |  |  | -14 |  | dB |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS-802.11g Tx Mode (MAX2829) (continued)

(MAX2829 evaluation kit: $\mathrm{VCC}=+2.7 \mathrm{~V}$, fout $=2.437 \mathrm{GHz}$, frEFOSC $=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ TXENA $=\overline{\mathrm{CS}}=$ high, RXENA $=$ SCLK $=\mathrm{DIN}=$ low, $\mathrm{R}_{\mathrm{BI}} \mathrm{AS}=11 \mathrm{k} \Omega, 100 \mathrm{~m} V_{\text {RMS }}$ sine and cosine signal (or 100 mV RMS, 54 Mbps IEEE $802.11 \mathrm{~g} \mathrm{I/Q} \mathrm{signals} \mathrm{wherever} \mathrm{OFDM} \mathrm{is} \mathrm{men-}$ tioned) applied to baseband $I / Q$ inputs of transmitter, registers set to default settings and corresponding test mode, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Table 4)

| PARAMETER | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RF Spurious Signal Emissions | $B 6: B 1=111011$, OFDM signal | $2 / 3 \times \mathrm{frF}$ | -64 |  | $\begin{aligned} & \mathrm{dBm} / \\ & \mathrm{MHz} \end{aligned}$ |
|  |  | $4 / 3 \times \mathrm{fRF}$ | -61 |  |  |
|  |  | $5 / 3 \times \mathrm{fRF}$ | -63 |  |  |
|  |  | $8 / 3 \times \mathrm{fRF}$ | -52 |  |  |
| Baseband -3dB Corner Frequency | (See the Lowpass Filter Register Definition section) | Nominal mode | 12 |  | MHz |
|  |  | Turbo mode 1 | 18 |  |  |
|  |  | Turbo mode 2 | 24 |  |  |
| Baseband Filter Rejection | At 30 MHz , in nominal mode (see the Lowpass Filter Register Definition section) |  | 60 |  | dB |
| Tx Baseband Input Impedance | Minimum differential resistance |  | 60 |  | $\mathrm{k} \Omega$ |
|  | Maximum differential capacitance |  | 0.7 |  | pF |

TRANSMITTER LO LEAKAGE AND I/Q CALIBRATION USING LO LEAKAGE AND SIDEBAND DETECTOR (SEE THE Tx/Rx CALIBRATION MODE SECTION)
Tx BASEBAND I/Q INPUTS TO RECEIVER OUTPUTS

| LO Leakage and SidebandDetector Output | Calibration register,D12:D11 = 11,$\text { A3:A0 }=0110$ | $\begin{aligned} & \text { Output at } 1 \times \text { fTONE (for LO leakage } \\ & =-29 \mathrm{dBc} \text { ), fTONE }=2 \mathrm{MHz} \text {, } \\ & 100 \mathrm{mV} \text { RMS } \end{aligned}$ | -3 | dBV ${ }_{\text {RMS }}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Output at $2 \times \mathrm{fTONE}$ (for sideband suppression $=-40 \mathrm{dBc}$ ), $\mathrm{fTONE}=$ $2 \mathrm{MHz}, 100 \mathrm{mV}$ RMS | -13 |  |
| Amplifier Gain Range | D12:D11 = 00 to D12:D11 = 11, A3:A0 $=0110$ |  | 26 | dB |
| Lower -3dB Corner Frequency |  |  | 1 | MHz |

## MAX2828/MAX2829

Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—802.11a Tx Mode (MAX2828/MAX2829)

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{C C}=+2.7 \mathrm{~V}$, fout $=5.25 \mathrm{GHz}$, frEFOSC $=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\mathrm{TXENA}=\overline{\mathrm{CS}}=$ high, RXENA $=$ SCLK $=\mathrm{DIN}=$ low, R BIAS $=11 \mathrm{k} \Omega, 100 \mathrm{mV}$ RMS sine and cosine signal (or 100 mV RMS, 54 Mbps IEEE 802.11 a I/Q signals wherever OFDM is mentioned) applied to baseband I/Q inputs of transmitter, registers set to default settings and corresponding test mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Table 4)


## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—Frequency Synthesis

(MAX2828/MAX2829 evaluation kits: $\mathrm{VCC}_{C}=+2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\mathrm{REF}} \mathrm{COSC}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ $\overline{\mathrm{CS}}=$ high, SCLK $=\mathrm{DIN}=$ low, PLL loop bandwidth $=150 \mathrm{kHz}, \mathrm{R}_{\mathrm{BIAS}}=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | CONDITIONS |  |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQUENCY SYNTHESIZER |  |  |  |  |  |  |  |
| RF Channel Center Frequency | 802.11 g mode |  |  | 2412 |  | 2500 | MHz |
|  | 802.11a low-band mode |  |  | 4900 |  | 5350 |  |
|  | 802.11a high-band mode |  |  | 5470 |  | 5875 |  |
| Charge-Pump Comparison Frequency |  |  |  | 20 |  |  | MHz |
| frefosc Input Frequency |  |  |  | 20 |  | 44 | MHz |
| Reference-Divider Ratio |  |  |  | 1 |  | 4 |  |
| frefosc Input Levels | AC-coupled |  |  | 800 |  |  |  |
| freFosc Input Impedance |  |  |  | 10 |  |  | $\mathrm{k} \Omega$ |
| Closed-Loop Phase Noise | 802.11 g |  | foffset $=1 \mathrm{kHz}$ |  | -87 |  | $\mathrm{dBc} / \mathrm{Hz}$ |
|  |  |  | foFFSET $=10 \mathrm{kHz}$ |  | -103 |  |  |
|  |  |  | foffset $=100 \mathrm{kHz}$ |  | -99 |  |  |
|  |  |  | foFFSET $=1 \mathrm{MHz}$ |  | -112 |  |  |
|  |  |  | foffset $=10 \mathrm{MHz}$ |  | -125 |  |  |
|  |  |  | foffset $=1 \mathrm{kHz}$ |  | -84 |  |  |
|  |  |  | foFFSET $=10 \mathrm{kHz}$ |  | -95 |  |  |
|  | 802.11a |  | foffset $=100 \mathrm{kHz}$ |  | -92 |  |  |
|  |  |  | foFFSET $=1 \mathrm{MHz}$ |  | -108 |  |  |
|  |  |  | foFFSET $=10 \mathrm{MHz}$ |  | -124 |  |  |
| Closed-Loop Integrated Phase | RMS phas | se jitter, | 802.11 g |  | 0.6 |  | es |
| Noise | $\text { to } 10 \mathrm{MHz}$ | z offset | 802.11a |  | 1 |  | rees |
| Charge-Pump Output Current |  |  |  |  | 4 |  | mA |
| Charge-Pump Output Voltage | >70\% of | ICP |  | 0.5 |  | -0.5V | V |
| Reference Spurs | 20MHz | st | 802.11 g |  | -65 |  | dBc |
| Reference Spurs | 20MHz | set | 802.11a |  | -58 |  | c |
| VOLTAGE-CONTROLLED OSCIL | LATOR |  |  |  |  |  |  |
| VCO Tuning Voltage Range |  |  |  | 0.4 |  | 2.3 | V |
|  |  |  | $\mathrm{V}_{\text {TUNE }}=0.4 \mathrm{~V}$ |  | 135 |  |  |
|  | 2.11 g |  | $\mathrm{V}_{\text {TUNE }}=2.3 \mathrm{~V}$ |  | 62 |  |  |
| LOTunin |  | Low band | $V_{\text {TUNE }}=0.3 \mathrm{~V}$ |  | 324 |  | MHz |
| LO | 802.11 a | Low band | $\mathrm{V}_{\text {TUNE }}=2.2 \mathrm{~V}$ |  | 167 |  | MHzN |
|  | 802.11a |  | $V_{\text {TUNE }}=0.3 \mathrm{~V}$ |  | 330 |  |  |
|  |  | High band | $\mathrm{V}_{\text {TUNE }}=2.2 \mathrm{~V}$ |  | 175 |  |  |

MAX2828/MAX2829
Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS—Miscellaneous Blocks

(MAX2828/MAX2829 evaluation kits: $\mathrm{VCC}_{\mathrm{C}}=+2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\mathrm{REF}} \mathrm{FOS}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ $\overline{\mathrm{CS}}=$ high, $\mathrm{SCLK}=\mathrm{DIN}=$ low, R BIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PA BIAS DAC |  |  |  |  |  |  |
| Number of Programmable Bits |  |  |  | 6 |  | Bits |
| Minimum Output Sink Current | D5:D0 = 000000 (see the PA Bias DAC Register Definition section) |  |  | 0 |  | $\mu \mathrm{A}$ |
| Maximum Output Sink Current | D5:D0 = 111111 (see the PA Bias DAC Register Definition section), output voltage $=0.8 \mathrm{~V}$ |  |  | 313 |  | $\mu \mathrm{A}$ |
| Turn-On Time | D9:D6 = 0000 (see the PA Bias DAC Register Definition section) |  |  | 0.2 |  | $\mu \mathrm{s}$ |
| DNL |  |  |  | 1 |  | LSB |
| ON-CHIP TEMPERATURE SENSOR |  |  |  |  |  |  |
| Output Voltage | D11 = 1 (see the $R x$ Control/RSSI Register Definition section) | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ |  | 0.5 |  | V |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 1.05 |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 1.6 |  |  |

## AC ELECTRICAL CHARACTERISTICS-Timing

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, $\mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})$ or $f_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), f_{\mathrm{REFOSC}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ $\overline{\mathrm{CS}}=$ high, SCLK $=\mathrm{DIN}=$ low, PLL loop bandwidth $=150 \mathrm{kHz}, \mathrm{R}_{\mathrm{BI}} \mathrm{AS}=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM TIMING (See Figure 1) |  |  |  |  |  |
| Turn-On Time | From $\overline{\text { SHDN }}$ rising edge (PLL locked) |  | 50 |  | $\mu \mathrm{s}$ |
| Shutdown Time |  |  | 2 |  | $\mu \mathrm{s}$ |
| Channel Switching Time |  |  | 25 |  |  |
|  | $\mathrm{f}_{\mathrm{RFF}}=5.15 \mathrm{GHz}$ to 5.35 GHz |  | 35 |  |  |
|  | $\mathrm{f}_{\mathrm{RF}}=5.45 \mathrm{GHz}$ to 5.875 GHz |  | 130 |  | $\mu$ |
|  | $\mathrm{fRF}=4.9 \mathrm{GHz}$ to 5.875 GHz |  | 130 |  |  |
| Rx/Tx Turnaround Time | Measured from Tx or Rx enable rising edge; signal settling to within $\pm 2 \mathrm{~dB}$ of steady state | Rx to Tx | 1 |  |  |
|  |  | Tx to Rx, RXHP = 1 | 1.2 |  | us |
| Tx Turn-On Time (From Standby Mode) | From Tx enable rising edge; signal settling to within $\pm 2 \mathrm{~dB}$ of steady state |  | 1 |  | $\mu \mathrm{s}$ |
| Rx Turn-On Time (From Standby Mode) | From Rx enable rising edge; signal settling to within $\pm 2 \mathrm{~dB}$ of steady state |  | 1.2 |  | $\mu \mathrm{s}$ |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

## AC ELECTRICAL CHARACTERISTICS-Timing (continued)

(MAX2828/MAX2829 evaluation kits: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, $\mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), f_{R E F O S C}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ $\overline{\mathrm{CS}}=$ high, SCLK $=\mathrm{DIN}=$ low, PLL loop bandwidth $=150 \mathrm{kHz}, \mathrm{R}_{\mathrm{BIAS}}=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3-WIRE SERIAL INTERFACE TIMING (SEE FIGURE 2) |  |  |  |  |  |
| SCLK-Rising-Edge to $\overline{\mathrm{CS}}$-FallingEdge Wait Time, tcso |  |  | 6 |  | ns |
| Falling Edge of $\overline{\mathrm{CS}}$ to Rising Edge of First SCLK Time, tcss |  |  | 6 |  | ns |
| DIN-to-SCLK Setup Time, tDS |  |  | 6 |  | ns |
| DIN-to-SCLK Hold Time, tDH |  |  | 6 |  | ns |
| SCLK Pulse-Width High, tch |  |  | 6 |  | ns |
| SCLK Pulse-Width Low, tCL |  |  | 6 |  | ns |
| Last Rising Edge of SCLK to Rising Edge of $\overline{\mathrm{CS}}$ or Clock to Load Enable Setup Time, tcsh |  |  | 6 |  | ns |
| $\overline{\overline{C S}}$ High Pulse Width, tcsw |  |  | 20 |  | ns |
| Time Between the Rising Edge of $\overline{\mathrm{CS}}$ and the Next Rising Edge of SCLK, tCS1 |  |  | 6 |  | ns |
| Clock Frequency, fCLK |  |  | 40 |  | MHz |
| Rise Time, tR |  |  | 2 |  | ns |
| Fall Time, $\mathrm{tF}^{\text {F }}$ |  |  | 2 |  | ns |

Note 1: Devices are production tested at $+85^{\circ} \mathrm{C}$ only. Min and max limits at temperatures other than $+85^{\circ} \mathrm{C}$ are guaranteed by design and characterization.
Note 2: Register settings for MIMO mode. A3:A0 = 0101 and $\mathrm{A} 3: \mathrm{AO}=0010, \mathrm{D} 13=1$.
Note 3: The expected part-to-part variation of the RF gain step is $\pm 1 \mathrm{~dB}$.
Note 4: $T x I / Q$ inputs $=100 \mathrm{mV}$ RMS. Set Tx VGA gain to max .

## Table 1. Receiver Front-End Gain-Control Settings

| B7 | B6 | GAIN |
| :---: | :---: | :---: |
| 1 | 1 | High |
| 1 | 0 | Medium |
| 0 | $X$ | Low |

Table 2. Receiver Baseband VGA Gain Settings

| B5:B1 | GAIN |
| :---: | :---: |
| 11111 | Max |
| 11110 | Max -2 dB |
| 11101 | Max -4 dB |
| $:$ | $:$ |
| 00000 | Min |

MAX2828/MAX2829
Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

Table 3. Receiver Baseband VGA Gain Step Control

| BIT | GAIN STEP (typ) |
| :---: | :---: |
| B1 | 2 dB |
| B2 | 4 dB |
| B3 | 8 dB |
| B4 | 16 dB |
| B5 | 32 dB |

Table 4. Tx VGA Gain Control Settings

| NUMBER | B6:B1 | OUTPUT SIGNAL POWER |
| :---: | :---: | :---: |
| 63 | 111111 | Max |
| 62 | 111110 | Max -0.5 dB |
| 61 | 111101 | Max -1.0 dB |
| $:$ | $:$ | $:$ |
| 49 | 110001 | Max -7 dB |
| 48 | 110000 | Max 7.5 dB |
| 47 | 101111 | Max -8 dB |
| 46 | 101110 | Max -8 dB |
| 45 | 101101 | Max -9 dB |
| 44 | 101100 | Max -9 dB |
| $:$ | $:$ | $:$ |
| 5 | 000101 | Max -29 dB |
| 4 | 000100 | Max -29 dB |
| 3 | 000011 | Max -30 dB |
| 2 | 000010 | Max -30 dB |
| 1 | 000001 | Max -30 dB |
| 0 | 000000 | Max -30 dB |



Figure 1. System Timing Diagram

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs



Figure 2. 3-Wire Serial-Interface Timing Diagram
Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\text {REFOSC }}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)

### 802.11 g



NOISE FIGURE
vs. BASEBAND GAIN SETTINGS


TX Icc vs. Vcc

rX VOLTAGE GAIN
vs. BASEBAND GAIN SETTINGS



RX IN-BAND OUTPUT P-1dB
vs. GAIN


## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\mathrm{REFOSC}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)

### 802.11g



RX I/Q DC OFFSET SETTLING RESPONSE (-8dB BB VGA GAIN STEP)


## RX I/Q DC OFFSET SETTLING RESPONSE

 (-32dB BB VGA GAIN STEP)

RX RSSI OUTPUT vs. INPUT POWER


RX I/Q DC OFFSET SETTLING RESPONSE (+8dB BB VGA GAIN STEP)


RX EVM vs. PIN


RX EMISSION SPECTRUM, LNA INPUT (TX OFF, LNA = LOW GAIN)


RX I/Q DC OFFSET SETTLING RESPONSE (-16dB BB VGA GAIN STEP)



## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\mathrm{REFOSC}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)


Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a})$, $\mathrm{fREFOSC}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)

### 802.11g





TX SIDEBAND SUPPRESSION


802.11g TX Pout AT 2.4GHz


## MAX2828/MAX2829 Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\text {REFOSC }}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)


NOISE FIGURE
vs. BASEBAND GAIN SETTINGS

rX VOLTAGE GAIN VARIATION



NOISE FIGURE vs. FREQUENCY


RX IN-BAND OUTPUT P-1dB vs. GAIN



RX VOLTAGE GAIN
vs. BASEBAND GAIN SETTING


RX RSSI OUTPUT vs. INPUT POWER


Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a})$, $\mathrm{fREFOSC}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, $\mathrm{R}_{\mathrm{BIIAS}}=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)


## MAX2828/MAX2829 Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a})$, $\mathrm{fREFOSC}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)


Typical Operating Characteristics (continued)
$\left(V_{C C}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a}), \mathrm{f}_{\mathrm{REFOSC}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)
802.11a



I/Q OUTPUT DC ERROR DROOP
( $\mathrm{RXHP}=1-0 ; A 3: A 1=1000, D 2=0$ )


20ms/div

RX GAIN IMBALANCE


TX SIDEBAND SUPPRESSION

802.11g/802.11a

RX RSSI STEP RESPONSE (+40dB SIGNAL STEP)


802.11a TX Pout AT 5.25GHz



## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=2.437 \mathrm{GHz}(802.11 \mathrm{~g})\right.$ or $\mathrm{f}_{\mathrm{RF}}=5.25 \mathrm{GHz}(802.11 \mathrm{a})$, $\mathrm{f}_{\mathrm{REFO}} \mathrm{CC}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=\mathrm{SCLK}=\mathrm{DIN}=$ low, RBIAS $=11 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ using the MAX2828/MAX2829 evaluation kits.)

### 802.11g/802.11a



RX BB VGA SETTLING RESPONSE (-32dB GAIN STEP)



RX BB VGA SETTLING RESPONSE
(-8dB GAIN STEP)


RX BB FREQUENCY RESPONSE
vs. FINE SETTING (COARSE SETTING $=\mathbf{9 . 5 M H z}$ )


GROUP DELAY RIPPLE


RX BB VGA SETTLING RESPONSE (-16dB GAIN STEP)


RX BB FREQUENCY RESPONSE vs. COARSE SETTING (FINE SETTING = 010)



MAX2828/MAX2829
Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs


# MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs 

Block Diagrams/Typical Operating Circuits (continued)


MAX2828/MAX2829
Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs
Pin Description

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| MAX2828 | MAX2829 |  |  |
| 1 | 1 | B6 | Rx Front-End and Tx Gain-Control Digital Input Bit 6 |
| 2 | 2 | VCC | 2.4GHz/5GHz LNA Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 3 | 3 | B7 | Rx Front-End Gain-Control Digital Input Bit 7 |
| 4, 11, 12 | - | N.C. | No Connection. Leave unconnected. |
| 5 | 5 | GND | LNA Ground. Make connections to ground vias as short as possible. Do not share ground vias with any of the other branches. |
| 6 | 6 | RXRFH | 5 GHz Single-Ended LNA Input. Requires AC-coupling and external matching network. |
| 7 | 7 | GND | LNA Ground. Make connections to ground vias as short as possible. Do not share ground vias with any other branches. |
| 8 | 8 | TXRFH+ | 5GHz Tx PA Driver Differential Outputs. Requires AC-coupling and external matching |
| 9 | 9 | TXRFH- | network (and balun) |
| 10 | 10 | VCC | Tx RF Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 13 | 13 | TXENA | Tx Mode Enable Digital Input. Set high to enable Tx (see Figure 1). |
| 14 | 14 | PABIAS | DAC Current Output. Connect directly to the external PA bias pin. |
| 15 | 15 | VCC | Tx Baseband Filter Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 16 | 16 | TXBBI+ | seband I-Channel Differential Inputs |
| 17 | 17 | TXBBI- | enand-Channel Diferential Inpu |
| 18 | 18 | TXBBQ+ | Tx Baseband Q-Channel Differential Inputs |
| 19 | 19 | TXBBQ- | Tx Baseband Q-Channel Diferential Inputs |
| 20 | 20 | VCC | Tx Upconverter Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 21 | 21 | RBIAS | This Analog Voltage Input is Internally Biased to a Bandgap Voltage. Connect an external precision $11 \mathrm{k} \Omega$ resistor or current source between this pin and ground to set the bias current for the device. |
| 22 | 22 | VCC | Reference Circuit Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 23 | 23 | $V_{\text {REF }}$ | Reference Voltage Output |
| 24 | 24 | GND | Digital Circuit Ground. Make connections to ground vias as short as possible. Do not share ground vias with any other branches. |
| 25 | 25 | VCC | Digital Circuit Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |

Pin Description (continued)

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| MAX2828 | MAX2829 |  |  |
| 26 | 26 | DIN | Data Digital Input of 3-Wire Serial Interface (See Figure 2) |
| 27 | 27 | SCLK | Clock Digital Input of 3-Wire Serial Interface (See Figure 2) |
| 28 | 28 | $\overline{\mathrm{CS}}$ | Active-Low Enable Digital Input of 3-Wire Serial Interface (See Figure 2) |
| 29 | 29 | LD | Lock-Detect Digital Output of Frequency Synthesizer. Output high indicates that the frequency synthesizer is locked. |
| 30 | 30 | ROSC | Reference Oscillator Input. Connect an external reference oscillator to this analog input. |
| 31 | 31 | VCC | PLL Charge-Pump Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 32 | 32 | GND | Charge-Pump Circuit Ground. Make connections to ground vias as short as possible. Do not share ground vias with any other branches. |
| 33 | 33 | CPOUT | Charge-Pump Output. Connect the frequency synthesizer's loop filter between CPOUT and TUNE. Keep the line from this pin to the tune input as short as possible to prevent spurious pickup. Connect C2 as close to CPOUT as possible. Do not share the capacitor ground vias with any other branches (see the Typical Operating Circuit). |
| 34 | 34 | GND | Ground. Make connections to ground vias as short as possible. Do not share ground vias with any other branches. |
| 35 | 35 | GND | VCO Ground. Make connections to ground vias as short as possible. Do not share ground vias with any other branches. |
| 36 | 36 | TUNE | VCO TUNE Input. Connect C 1 as close to TUNE as possible. Connect the ground of C 1 to VCO ground. Do not share the capacitor ground vias with any other branches (see the Typical Operating Circuit). |
| 37 | 37 | BYPASS | Bypass with a $0.1 \mu$ F Capacitor to GND. The capacitor is used by the on-chip VCO voltage regulator. |
| 38 | 38 | $V_{C C}$ | VCO Supply Voltage. Bypass to system ground as close as possible to the pin with capacitors. Do not share the ground vias for the bypass capacitors with any other branches. |
| 39 | 39 | $\overline{\text { SHDN }}$ | Active-Low Shutdown Digital Input. Set high to enable the device. |
| 40 | 40 | RSSI | RSSI or Temperature-Sensor Multiplexed Output |
| 41 | 41 | RXENA | Rx Mode Enable Digital Input. Set high to enable Rx. |
| 42 | 42 | RXHP | Rx Baseband AC-Coupling Highpass Corner Frequency Control Digital Input Selection Bit |
| 43 | 43 | RXBBQ- | Rx Baseband Q-Channel Differential Outputs. In Tx calibration mode, these pins are the |
| 44 | 44 | RXBBQ+ | LO leakage and sideband-detector outputs. |
| 45 | 45 | RXBBI- | Rx Baseband I-Channel Differential Outputs. In Tx calibration mode, these pins are the LO |
| 46 | 46 | RXBBI+ | leakage and sideband-detector outputs. |
| 47 | 47 | VCC | Rx Baseband Buffer Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 48 | 48 | B1 | Rx/Tx Gain-Control Digital Input Bit 1 |
| 49 | 49 | VCC | Rx Baseband Filter Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not share the bypass-capacitor ground vias with any other branches. |

Pin Description (continued)

| PIN |  | NAME |  |
| :---: | :---: | :---: | :--- |
| MAX2828 | MAX2829 |  |  |
| 50 | 50 | B2 | Rx/Tx Gain-Control Digital Input Bit 2 |
| 51 | 51 | GND | Rx IF Ground. Make connections to ground vias as short as possible. Do not share <br> ground vias with any other branches. |
| 52 | 52 | VCC | Rx IF Supply Voltage. Bypass with a capacitor as close to the pin as possible. Do not <br> share the bypass-capacitor ground vias with any other branches. |
| 53 | 53 | B3 | Rx/Tx Gain-Control Digital Input Bit 3 |
| 54 | 54 | B4 | Rx/Tx Gain-Control Digital Input Bit 4 |
| 55 | 55 | VCC | Rx Downconverter Supply Voltage. Bypass with a capacitor as close to the pin as <br> possible. Do not share the bypass-capacitor ground vias with any other branches. |
| 56 | 56 | B5 | Rx/Tx Gain-Control Digital Input Bit 5 |
| - | 4 | RXRFL | 2.4GHz Single-Ended LNA Input. Requires AC-coupling and external matching network. <br> - |
| - | 11 | TXRFL+ | 2.4GHz Tx PA Driver Differential Outputs. Requires AC-coupling and external matching <br> network (and balun) to the external PA input. |
| EP | EP | EXPOSED <br> PADDLE | Exposed Paddle. Connect to the ground plane with multiple vias for proper operation and <br> heat dissipation. |

## Table 5. Mode Table

| MODE | LOGIC PINS |  |  | REGISTER <br> SETTINGS |
| :---: | :---: | :---: | :---: | :---: |
|  | SHDN | TXENA | RXENA |  |
| SPITM Reset | 0 | 1 | 1 | X |
| Shutdown | 0 | 0 | 0 | X |
| Standby | 1 | 0 | 0 | X |
| Rx | 1 | 0 | 1 | X |
| Tx | 1 | 1 | 0 | Calibration <br> register D1 = 1 |
| Tx Calibration | 1 | 1 | 0 | Calibration <br> register D0 $=1$ |
| Rx Calibration | 1 | 0 | 1 |  |

$X=$ Don't care or do not apply.

## Detailed Description

The MAX2828/MAX2829 single-chip, RF transceiver ICs are designed for WLAN applications. The MAX2828 is designed for 5 GHz 802.11 a (OFDM), and the MAX2829 is designed for dual-band $2.4 \mathrm{GHz} 802.11 \mathrm{~b} / \mathrm{g}$ and 5 GHz 802.11a. The ICs include all circuitry required to implement the RF transceiver function, fully integrating the receive path, transmit path, VCO, frequency synthesizer, and baseband/control interface.

## Modes of Operation

The MAX2828/MAX2829 have seven primary modes of operation: shutdown, SPI reset, standby, transmit, receive, transmitter calibration, and receiver calibration (see Table 5).

# MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs 

## Shutdown Mode

Shutdown mode is achieved by driving SHDN low. In shutdown mode, all circuit blocks are powered down, except for the serial interface. While the device is in shutdown, the values of the serial interface registers are maintained and can be changed as long as $\mathrm{V}_{\mathrm{Cc}}$ (pin 25) is applied.

## SPI Reset

By driving RXENA and TXENA high while setting SHDN low, all circuit blocks are powered down, as in shutdown mode. However, in SPI reset mode, all registers are returned to their default states. It is recommended to reset the SPI and all registers at the start of power-up to ensure that the registers are set to the correct values (see Table 9).

## Standby Mode

To place the device in standby mode, set $\overline{\text { SHDN }}$ high and RXENA and TXENA low. This mode is mainly used to enable the frequency synthesizer block while the rest of the device is powered down. In this mode, various blocks in the system can be selectively turned on or off according to the standby register table (Table 10).

## Receive (Rx) Mode

To place the device in Rx mode, set RXENA high. All receiver blocks are enabled in this mode.

## Transmit (Tx) Mode

To place the device in Tx mode, set TXENA high. All transmitter blocks are enabled in this mode.

TX/RX Calibration Mode The MAX2828/MAX2829 feature Tx/Rx calibration modes to detect I/Q imbalances and transmit LO leakage. In the Tx calibration mode, the LO leakage calibration is done only for the LO leakage signal that is present at the center frequency of the channel (i.e., in the middle of the OFDM or QPSK spectrum). The LO leakage calibration includes the effect of all DC offsets in the entire baseband paths of the I/Q modulator, and also includes direct leakage of the LO to the I/Q modulator output.
The transmitter LO leakage and sideband-detector output is taken at the receiver I- or Q-channel output during this calibration phase.

During Tx LO leakage and I/Q imbalance calibration, a sine and cosine signal ( $f=f T O N E$ ) is input to the baseband I/Q Tx pins from the baseband IC. At the LO leakage and sideband-detector output, the LO leakage corresponds to the signal at fTONE and the sideband suppression corresponds to the signal at $2 \times$ ftoNE. The output power of these signals vary 2 dB for 1 dB of variation in the LO leakage and unwanted sideband levels. To calibrate the Tx path, first set the powerdetector gain to 8dB (Table 14). Adjust the DC offset of the baseband inputs to minimize the signal at ftone (LO leakage). Then, adjust the baseband input relative magnitude and phase offsets to reduce the signal at 2 x fTONE. If required, calibration can be done with higher LO leakage and sideband-detector gain settings to decrease LO leakage and increase image suppression.
After calibrating the transmitter, receiver calibration can be done. In Rx calibration mode, the calibrated Tx RF signal is internally routed to the Rx downconverter inputs. In this loopback calibration mode, the voltage regulator must be able to source 350 mA total since both Tx and Rx are turned on simultaneously.

## RF Synthesizer Programming in 5GHz Mode

In the 5 GHz mode, the RF frequency synthesizer covers a 4.9 GHz to 5.9 GHz range. To achieve this large tuning range while maintaining excellent noise performance, the 1 GHz band is divided into sub-bands within which the VCO is tuned. The selection of the appropriate VCO sub-band is done automatically by a finite state machine (FSM). The PLL settling time is approximately $300 \mu \mathrm{~s}$ for a change of 1 GHz in the channel frequency. A faster PLL settling can be achieved by overriding the FSM and manually programming the VCO sub-band.

## Automatic VCO Sub-Band Selection

 By enabling this band-selection mode, only 1 bit needs to be programmed to start the frequency acquisition. The FSM will automatically stop after it selects the correct VCO sub-band, and after the PLL has locked.Table 6. B1:B0 VCO Sub-Band Assignments (Read Back Through LockDetect Pin)

| B1 | B0 | VCO FREQUENCY BAND |
| :---: | :---: | :--- |
| 0 | 0 | Band 0 (lowest frequency band) |
| 0 | 1 | Band 1 |
| 1 | 0 | Band 2 |
| 1 | 1 | Band 3 (highest frequency band) |

The following steps should be followed:

1) Set $D 8=0(A 3: A 0=0101)$ to enable the automatic VCO sub-band selection by the FSM.
2) Enable the PLL and VCO if required. If required, program the divider ratios corresponding to the desired channel frequency.
3) Set D7 = $1(\mathrm{~A} 3: \mathrm{AO}=0101)$ to start the FSM. The FSM should only be started after PLL and VCO are enabled, or after channel frequency is changed.
4) The VCO sub-band selection and PLL settling time takes less than approximately $300 \mu \mathrm{~s}$. After the band switching is completed and the PLL has locked to the correct channel frequency, the FSM stops automatically.
Every time the channel frequency is programmed or the PLL+VCO is enabled, the FSM needs to be reset to be used again for the next time. This reset operation does not affect the PLL or VCO. To reset the FSM, set D7 $=0$ (A3:A0 = 0101).
Every channel frequency maps to some VCO subband. Each VCO sub-band has a digital code, of which the 2 LSBs ( $\mathrm{B} 1: \mathrm{BO}$ ) are readable. The $\mathrm{B} 1: \mathrm{BO}$ code can be read through pin LD by programming D3:D0 $=0111$ (A3:A1 = 0000) for B1, or D3:D0 $=0110(\mathrm{AB}: \mathrm{A} 1=0000)$ for B0 (see Table 6).

## Manual VCO Sub-Band Selection

For faster settling, the VCO sub-band ( $\mathrm{B} 1: \mathrm{BO}$ ) can be directly programmed through the SPI. First, the B1:B0 code for every channel frequency must be determined. Once this is known, the B1:B0 code is directly programmed along with the PLL divider values, for the given channel frequency. The PLL settling time in this case is approximately $50 \mu \mathrm{~s}$.
Large temperature changes ( $>+50^{\circ} \mathrm{C}$ ) may cause the channel frequency to move into an adjacent sub-band. To determine the correct sub-band, two on-chip comparators monitor the VCO control voltage ( $\mathrm{V}_{\text {TUNE }}$ ). These comparator logic outputs can be read through

Table 7. D10:D9 VCO Sub-Band
Assignments (For Programming Through SPI)

| D10 | D9 | PROGRAMMED VCO <br> FREQUENCY BAND |
| :---: | :---: | :--- |
| 0 | 0 | Band 0 |
| 0 | 1 | Band 1 |
| 1 | 0 | Band 2 |
| 1 | 1 | Band 3 |

Table 8. Comparator-Output Definition

| A3:A1 = 0000; <br> $\mathbf{D 3}: \mathbf{D 0}=\mathbf{0 1 0 1}$ | $\mathbf{A 3}: \mathbf{A 1}=\mathbf{0 0 0 0} ;$ <br> $\mathbf{D 3}: \mathbf{D 0}=\mathbf{0 1 0 0}$ | RESPONSE |
| :---: | :---: | :--- |
| 0 | 0 | Program to a lower sub-band <br> if VCO is not in Band 0. |
| 0 | 1 | No change. |
| 1 | 0 | Program to a higher sub- <br> band if VCO is not in Band 3. |
| 1 | 1 | Invalid state, does not occur. |

the LD pin to decide whether the frequency sub-band is correct or needs to be reprogrammed.
The following steps need to be followed to complete manual PLL frequency acquisition and VCO sub-band selection:

1) Set $D 8=1(A 3: A 0=0101)$ to enable manual $V C O$ sub-band selection.
2) Enable the PLL and VCO if required. If required, program the divider ratios corresponding to the desired channel frequency.
3) Set D10:D9 (A3:A0 = 0101) to program the VCO frequency sub-band according to Table 7. D10:D9 correspond to the same assignments as $\mathrm{B} 1: \mathrm{B0}$. After D10:D9 are programmed, $50 \mu \mathrm{~s}$ is required to allow the PLL to settle.
4) After $50 \mu \mathrm{~s}$ of PLL settling time, the comparator outputs can be read through pin LD (see Table 8).
5) Based on the comparator outputs, the VCO frequency sub-band is programmed again according to Table 8 until the frequency acquisition is achieved.

## Large Temperature Changes

If the PLL and VCO are continuously active (i.e., no reprogramming) and the die temperature changes by $50^{\circ} \mathrm{C}$ (as indicated by the on-chip temperature sensor), there is a possibility that the PLL may get unlocked due

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

Table 9. Register Default/SPI Reset Settings

| REGISTER | DEFAULT |  |  |  |  |  |  |  |  |  |  |  |  |  | ADDRESS | TABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | (A3:A0) |  |
| Register 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0000 | - |
| Register 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0001 | - |
| Standby | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0010 | 10 |
| Integer-Divider Ratio | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0011 | 11 |
| FractionalDivider Ratio | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0100 | 12 |
| Band Select and PLL | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0101 | 13 |
| Calibration | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0110 | 14 |
| Lowpass Filter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0111 | 15 |
| Rx Control/RSSI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1000 | 16 |
| Tx Linearity/Baseband Gain | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1001 | 17 |
| PA Bias DAC | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1010 | 18 |
| Rx Gain | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1011 | 19 |
| Tx VGA Gain | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1100 | 20 |

Table 10. Standby Register
(A3:A0 = 0010)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 0 | MIMO Select. Set to 0 for normal operation. Set to 1 for MIMO applications. |
| D12 | 1 | Set to 1 |
| D11 | 0 | Voltage Reference (Pin 23) |
| D10 | 0 | PA Bias DAC, in Tx Mode |
| D9 | 0 |  |
| D8 | 0 |  |
| D7 | 0 |  |
| D6 | 0 | Set to 0 |
| D5 | 0 |  |
| D4 | 0 |  |
| D3 | 0 |  |
| D2 | 1 |  |
| D1 | 1 | Set to 1 |
| D0 | 1 |  |

to the VCO drifting to an adjacent sub-band. In this case, it is advisable to reprogram the PLL by either manual or automatic sub-band selection.

## Programmable Registers

The MAX2828/MAX2829 include 13 programmable, 18bit registers: 0, 1, standby, integer-divider ratio, frac-tional-divider ratio, band select and PLL, calibration, lowpass filter, Rx control/RSSI, Tx linearity/baseband gain, PA bias DAC, Rx gain, and Tx VGA gain. The 14 most significant bits (MSBs) are used for register data. The 4 least significant bits (LSBs) of each register contain the register address. Data is shifted in MSB first. The data sent to the devices, in 18-bit words, is framed by $\overline{\mathrm{CS}}$. When $\overline{\mathrm{CS}}$ is low, the clock is active and data is shifted with the rising edge of the clock. When $\overline{\mathrm{CS}}$ transitions high, the shift register is latched into the register selected by the contents of the address bits. Only the last 18 bits shifted into the device are retained in the shift register. No check is made on the number of clock pulses. For programming data words less than 14 bits long, only the required data bits and the address bits are required to be shifted, resulting in faster Rx and Tx gain control where only the LSBs need to be pro-

## MAX2828/MAX2829

Single-/Dual-Band 802.11a/b/g
World-Band Transceiver ICs

Table 11. Integer-Divider Ratio Register (A3:A0 = 0011)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 1 | 2 LSBs of the Fractional-Divider Ratio |
| D12 | 1 |  |
| D11 | 0 | Set to 0 |
| D10 | 0 |  |
| D9 | 0 |  |
| D8 | 0 |  |
| D7 | 1 | Integer-Divider Ratio Word Programming Bits. Valid values are from 128 (D7:D0 = 10000000) to 255 (D7:D0 = 11111111). |
| D6 | 0 |  |
| D5 | 1 |  |
| D4 | 0 |  |
| D3 | 0 |  |
| D2 | 0 |  |
| D1 | 1 |  |
| D0 | 0 |  |

grammed. The interface can be programmed through the 3-wire SPI/MICROWIRE ${ }^{\text {TM }}$-compatible serial port.
On startup, it is recommended to reset all registers by placing the device in SPI reset mode (Table 5).

Standby Register Definition $(A 3: A 0=0010)$ Various internal blocks can be turned on or off using the standby register (in standby mode, see Table 10). Setting a bit to 1 turns the block on, while setting a bit to 0 turns the block off.

## Integer-Divider Ratio Register Definition <br> (A3:A0 = 0011)

This register contains the integer portion of the divider ratio of the synthesizer. This register, in conjunction with the fractional-divider ratio register, permits selection of a precise frequency. The main synthesizer divide ratio is an 8-bit value for the integer portion (see Table 11). Valid values for this register are from 128 to 255 (D7-D0). The default value is 210. D13 and D12 are reserved for the 2 LSBs of the fractional-divider ratio.

## Fractional-Divider Ratio Register Definition

(A3:A0 = 0100)
This register (along with D13 and D12 of the integerdivider ratio register) controls the fractional-divider ratio with 16-bit resolution. D13 to D0 of this register combined with D13 and D12 of the integer-divider ratio register form the whole fractional-divider ratio (see Tables 12a and 12b).

MICROWIRE is a trademark of National Semiconductor Corp.
Table 12a. IEEE 802.11g Frequency Plan and Divider Ratio Programming Words

| $\begin{gathered} \mathrm{fRF}_{\mathrm{RF}} \\ (\mathrm{MHz}) \end{gathered}$ | (fRF x 4/3) / 20MHz (DIVIDER RATIO) | INTEGER-DIVIDER RATIO | FRACTIONAL-DIVIDER RATIO |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | A3:A0 = 0011, D7:D0 | A3:A0 = 0100, D13:D0 (hex) | A3:A0 = 0011, D13:D12 (hex) |
| 2412 | 160.8000 | 10100000 | 3333 | 00 |
| 2417 | 161.1333 | 10100001 | 0888 | 10 |
| 2422 | 161.4667 | 10100001 | 1DDD | 11 |
| 2427 | 161.8000 | 10100001 | 3333 | 00 |
| 2432 | 162.1333 | 10100010 | 0888 | 10 |
| $\begin{aligned} & 2437 \\ & \text { (default) } \end{aligned}$ | 162.4667 | 10100010 | 1DDD | 11 |
| 2442 | 162.8000 | 10100010 | 3333 | 00 |
| 2447 | 163.1333 | 10100011 | 0888 | 10 |
| 2452 | 163.4667 | 10100011 | 1DDD | 11 |
| 2457 | 163.8000 | 10100011 | 3333 | 00 |
| 2462 | 164.1333 | 10100100 | 0888 | 10 |
| 2467 | 164.4667 | 10100100 | 1DDD | 11 |
| 2472 | 164.8000 | 10100100 | 3333 | 00 |
| 2484 | 165.6000 | 10100101 | 2666 | 01 |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs

Table 12b. IEEE 802.11a Frequency Plan and Divider Ratio Programming Words

| $\begin{gathered} \mathrm{fRF}_{\mathrm{RF}} \\ (\mathrm{MHz}) \end{gathered}$ | ( $\mathrm{f}_{\mathrm{RF}}$ X 4/5) / 20MHz (DIVIDER RATIO) | INTEGER-DIVIDER RATIO | FRACTIONAL-DIVIDER RATIO |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | A3:A0 = 0011, D7:D0 | $\begin{aligned} \text { A3:A0 }= & 0100, \text { D13:D0 } \\ & \text { (hex) } \end{aligned}$ |  |
| 5180 | 207.2 | 11001111 | OCCC | 11 |
| 5200 | 208.0 | 11010000 | 0000 | 00 |
| 5220 | 208.8 | 11010000 | 3333 | 00 |
| 5240 | 209.6 | 11010001 | 2666 | 01 |
| 5260 | 210.4 | 11010010 | 1999 | 10 |
| 5280 | 211.2 | 11010011 | OCCC | 11 |
| 5300 | 212.0 | 11010100 | 0000 | 00 |
| 5320 | 212.8 | 11010100 | 3333 | 00 |
| 5500 | 220.0 | 11011100 | 0000 | 00 |
| 5520 | 220.8 | 11011100 | 3333 | 00 |
| 5540 | 221.6 | 11011101 | 2666 | 01 |
| 5560 | 222.4 | 11011110 | 1999 | 10 |
| 5580 | 223.2 | 11011111 | OCCC | 11 |
| 5600 | 224.0 | 11100000 | 0000 | 00 |
| 5620 | 224.8 | 11100000 | 3333 | 00 |
| 5640 | 225.6 | 11100001 | 2666 | 01 |
| 5660 | 226.4 | 11100010 | 1999 | 10 |
| 5680 | 227.2 | 11100011 | OCCC | 11 |
| 5700 | 228.0 | 11100100 | 0000 | 00 |
| 5745 | 229.8 | 11100101 | 3333 | 00 |
| 5765 | 230.6 | 11100110 | 2666 | 01 |
| 5785 | 231.4 | 11100111 | 1999 | 10 |
| 5805 | 232.2 | 11101000 | OCCC | 11 |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

Table 13. Band-Select and PLL Register (A3:A0 = 0101)

| DATA BIT | DEFAULT |  |
| :---: | :---: | :--- |
| D13 | 0 | Set to 0 for Normal Operation. Set to 1 for MIMO applications. |
| D12 | 1 | DESCRIPTION |
| D11 | 1 |  |
| D10 | 0 | These Bits Set the VCO Sub-Band when Programmed Using the SPI (D8 = 1). D10:D9 = 00: lowest |
| D9 | 0 | frequency band; 11: highest frequency band. |

## Band-Select and PLL Register Definition

(A3:A0 = 0101)
This register configures the programmable-reference frequency dividers for the synthesizers, and sets the DC current for the charge pump. The programmablereference frequency divider provides the reference frequencies to the phase detector by dividing the crystal oscillator frequency (see Table 13).

Calibration Register Definition (A3:A0 = 0110) This register configures the Rx/Tx calibration modes (See Table 14).

Table 14. Calibration Register
(A3:A0 = 0110)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 0 | Set to 0 |
| D12 | 1 | Transmitter I/Q Calibration LO Leakage and Sideband-Detector |
| D11 | 1 | Gain-Control Bits. D12:D11 = 00: 8dB; 01: 18dB; 10: 24dB; 11: 34dB |
| D10 | 1 | Set to 1 |
| D9 | 0 |  |
| D8 | 0 |  |
| D7 | 0 |  |
| D6 | 0 |  |
| D5 | 0 | Set to |
| D4 | 0 |  |
| D3 | 0 |  |
| D2 | 0 |  |
| D1 | 0 | 0: Tx Calibration Mode Disabled; 1: Tx Calibration Mode Enabled (Rx outputs provide the LO leakage and sideband-detector signal) |
| D0 | 0 | 0: RX Calibration Mode Disabled; 1: Rx Calibration Mode Enabled |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

Table 15. Lowpass-Filter Register (A3:A0 = 0111)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 0 | Set to 0 |
| D12 | 0 |  |
| D11 | 0 | RSSI High Bandwidth Enable. 0: 2MHz; 1: 6MHz |
| D10 | 0 | Set to 0 |
| D9 | 0 |  |
| D8 | 0 |  |
| D7 | 0 |  |
| D6 | 0 | Tx LPF Corner Frequency Coarse Adjustment. D6:D5 = 00: undefined; 01: 12MHz (nominal mode); 10: 18 MHz (turbo mode 1); $11: 24 \mathrm{MHz}$ (turbo mode 2). |
| D5 | 1 |  |
| D4 | 0 | Rx LPF Corner Frequency Coarse Adjustment. D4:D3 $=00: 7.5 \mathrm{MHz}$; 01: 9.5 MHz (nominal mode); 10: 14 MHz (turbo mode 1); 11: 18MHz (turbo mode 2). |
| D3 | 1 |  |
| D2 | 0 | Rx LPF Corner Frequency Fine Adjustment (Relative to the Course Setting). D2:D0 $=000: 90 \%$; 001: 95\%; 010: 100\%; 011: 105\%; 100: 110\%. |
| D1 | 1 |  |
| D0 | 0 |  |

Lowpass Filter Register Definition (A3:AO = 0111)
This register allows the adjustment of the Rx and Tx lowpass filter corner frequencies (see Table 15).

Rx Control/RSSI Register Definition (A3:A0 = 1000)
This register allows the adjustment of the Rx section and the RSSI output (see Tables 16a and 16b).

Table 16a. Rx Control/RSSI Register (A3:A0 = 1000)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 0 | Set to 0 |
| D12 | 0 | Enable Rx VGA Gain Programming Serially. 0: Rx VGA gain programmed with external digital inputs (B7:B1); 1: Rx VGA gain programmed with serial data bits in the Rx gain register (D6:D0). |
| D11 | 0 | RSSI Output Range. 0: low range (0.5V to 2V); 1: high range (0.5V to 2.5 V ). |
| D10 | 0 | RSSI Operating Mode. 0 : RSSI disabled if RXHP $=0$, and enabled if RXHP $=1 ; 1$ : RSSI enabled independent of RXHP (see Table 16c). |
| D9 | 0 | Set to 0 |
| D8 | 0 | RSSI Pin Function. 0: outputs RSSI signal in Rx mode; 1: outputs temperature sensor voltage in Rx, Tx, and standby modes (see Table 16c). |
| D7 | 0 | Set to 0 |
| D6 | 0 |  |
| D5 | 1 | Set to 1 |
| D4 | 0 | Set to 0 |
| D3 | 0 | Seto |
| D2 | 1 | Rx Highpass -3dB Corner Frequency when RXHP = 0. 0: $100 \mathrm{~Hz} ; 1: 30 \mathrm{kHz}$ |
| D1 | 0 |  |
| D0 | 1 | D1:D0 = 0 |

## MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs

Table 16b. Rx HP -3dB Corner Frequency Adjustment

| $\mathbf{R X H P}$ | A3:A0 = 1000, D2 | Rx HP -3dB CORNER <br> FREQUENCY |
| :---: | :---: | :---: |
| 1 | $X$ | 600 kHz |
| 0 | 1 | 30 kHz |
| 0 | 0 | 100 Hz |

Table 16c. RSSI Pin Truth Table

| INPUT CONDITIONS |  |  | RSSI OUTPUT |  |
| :---: | :---: | :---: | :---: | :---: |
| A3:A0 = 1000, D8 | A3:A0 = 1000, D10 | RXENA |  | No Signal |
| 0 | 0 | 0 | $X$ | No Signal |
| 0 | 0 | 1 | 0 | RSSI |
| 0 | 0 | 1 | 1 | No Signal |
| 0 | 1 | 0 | $X$ | RSSI |
| 0 | 1 | 1 | $X$ | Temperature Sensor |
| 1 | $X$ | $X$ | $X$ |  |

## Tx Linearity/Baseband Gain Register Definition

(A3:AO = 1001)
This register allows the adjustment of the Tx gain and linearity (see Table 17).

Table 17. Tx Linearity/Baseband Gain Register (A3:A0 = 1001)

| DATA BIT | DEFAULT |  |
| :---: | :---: | :--- |
| D13 | 0 | DESCRIPTION |
| D12 | 0 |  |
| D11 | 0 |  |
| D10 | 0 | Enable Tx VGA Gain Programming Serially. 0: Tx VGA gain programmed with external digital inputs <br> (B6:B1); 1: Tx VGA gain programmed with data bits in the Tx gain register (D5:D0). |
| D9 | 1 | PA Driver Linearity. D9:D8 = 00: 50\% current (minimum linearity); 01: 63\% current; 10: 78\% current; 11: |
| D8 | 0 | 100\% current (maximum linearity). |

Table 18. PA Bias DAC Register
(A3:A0 = 1010)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 0 | Set to 0 |
| D12 | 0 |  |
| D11 | 0 |  |
| D10 | 0 |  |
| D9 | 1 | Sets PA bias DAC turn-on delay after TXENA is set high and A3:AO $=0010, \mathrm{D} 10=1$, in steps of $0.5 \mu \mathrm{~s}$. D9:D6 = 0001 corresponds to $0 \mu \mathrm{~s}$ and 1111 corresponds to $7 \mu$ s. |
| D8 | 1 |  |
| D7 | 1 |  |
| D6 | 1 |  |
| D5 | 0 | Sets PA bias DAC output current in steps of $5 \mu \mathrm{~A}$. D5:D0 $=000000$ corresponds to $0 \mu \mathrm{~A}$ and 111111 corresponds to $315 \mu \mathrm{~A}$. |
| D4 | 0 |  |
| D3 | 0 |  |
| D2 | 0 |  |
| D1 | 0 |  |
| D0 | 0 |  |

Table 19. Rx Gain Register
(A3:A0 = 1011)

| DATA BIT | DEFAULT | DESCRIPTION |  |
| :---: | :---: | :---: | :---: |
| D13 | 0 | Not Used. For faster Rx gain setting, only D6:D0 need to be programmed. |  |
| D12 | 0 |  |  |
| D11 | 0 |  |  |
| D10 | 0 |  |  |
| D9 | 0 |  |  |
| D8 | 0 |  |  |
| D7 | 0 |  |  |
| D6 | 1 | Rx LNA <br> Gain <br> Control | Rx baseband and RF gain-control bits. D6 maps to digital input pin B7 and D0 maps to digital input pin B1 D6:D0 = 0000000 corresponds to minimum gain. |
| D5 | 1 |  |  |
| D4 | 1 | Rx VGA Gain Control |  |
| D3 | 1 |  |  |
| D2 | 1 |  |  |
| D1 | 1 |  |  |
| D0 | 1 |  |  |

Table 20. Tx VGA Gain Register
(A3:A0 = 1100)

| DATA BIT | DEFAULT | DESCRIPTION |
| :---: | :---: | :---: |
| D13 | 0 | Not Used. For faster Tx VGA gain setting, only D5:D0 need to be programmed. |
| D12 | 0 |  |
| D11 | 0 |  |
| D10 | 0 |  |
| D9 | 0 |  |
| D8 | 0 |  |
| D7 | 0 |  |
| D6 | 0 |  |
| D5 | 0 | Tx VGA Gain Control. D5 maps to digital input pin B6 and D0 maps to digital input pin B1. D5:D0 = 000000 corresponds to minimum gain. |
| D4 | 0 |  |
| D3 | 0 |  |
| D2 | 0 |  |
| D1 | 0 |  |
| D0 | 0 |  |

PA Bias DAC Register Definition (A3:A0 = 1010) This register controls the output current of the DAC, which biases the external PA (see Table 18).

Rx Gain Register Definition $(A 3: A 0=1011)$
This register sets the Rx baseband and RF gain when $A 3: A 0=1000, D 12=1($ see Table 19 $)$.

Tx VGA Gain Register Definition (A3:AO = 1100) This register sets the Tx VGA gain when $A 3: A 0=1001$, D10 = 1 (see Table 20).

## Applications Information

## MIMO Applications

The MAX2828/MAX2829 support multiple input multiple output (MIMO) applications where multiple transceivers are used in parallel. A special requirement for this application is that all receivers must maintain a constant relative local oscillator phase, and that they continue to do so after any receive-transmit-receive mode switching. The same requirement holds for the transmitters-they should all maintain a constant relative phase, and continue to do so after any transmit-receive-transmit mode switching. This feature is enabled in the MAX2828/MAX2829 by programming $\mathrm{A} 3: \mathrm{AO}=0010, \mathrm{D} 13=1$ and $\mathrm{A} 3: \mathrm{AO}=0101$, D13 $=1$. The constant relative phases of the multiple transceivers are maintained in the transmit, receive, and standby modes of operation, as long as they are all using a common external reference frequency source (crystal oscillator).

# MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g <br> World-Band Transceiver ICs 

Rx Gain Control
The receiver gain can be set either by the digital input pins B1 through B7 or by the internal Rx gain register. The gain-control characteristic is shown in the Typical Operating Characteristics.

RSSI
The RSSI output can be configured for two output voltage ranges: 0.5 V to 2 V and 0.5 V to 2.5 V (see Table 16a). The RSSI output is unaffected by the Rx VGA gain setting. They are capable of driving loads up to $10 k \Omega \| 5 \mathrm{pF}$.

Tx VGA Gain Control
The Tx gain can be set either by digital input pins B1 through B6 or by the internal Tx VGA gain register. The linearity of the Tx blocks can also be adjusted (Table 17). The Tx VGA gain-control characteristic is shown in the Typical Operating Characteristics.

## Loop Filter

The loop-filter topology and component values can be found in the MAX2828/MAX2829 evaluation kit data sheet. A 150 kHz loop bandwidth is recommended to ensure that the loop settles fast enough during $T x / R x$ turnaround times.

PROCESS: BiCMOS

# MAX2828/MAX2829 <br> Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs 

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)


TOP VEW


DETALL A


SIDE VIEW


BOTTOM VIEW


APPLIES TO EXPOSED PAD AND TERMINALS.
EXCLUDES INTERNAL DIMENSION OF EXPOSED PAD.
9. MEETS JEDEC MO220.

| PKG.CODE | EXPOSED PAD VARIATION |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D2 |  |  | E2 |  |  | Jedec |  |
|  | MIN. | NOM. | max. | MIN. | NOM. | max. |  |  |
| T5688-1 | 6.50 | 6.65 | 6.70 | 6.50 | 6.65 | 6.70 | WLD-5 | NO |
| T5688-2 | 6.50 | 6.65 | 6.70 | 6.50 | 6.65 | 6.70 | WLD-5 | YES |
| T5688-3 | 6.50 | 6.65 | 6.70 | 6.50 | 6.65 | 6.70 | WLLD-5 | NO |

## NOTES:

1. die thicgness allowable is 0.225 mm maximum ( 0.009 inches maxinum).
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3. $N$ is the number of terminals.

No IS HEE NUNEER OF ERRMNALS IN X-DIRECTION a
4. DIMENSION b APPULES TO PLATED TERMINAL AND IS MEASURED

3. THE PIN * ${ }^{\text {F }}$ IDENTIFER MUST BE LOCATED ON THE TOP SURFACE OF THE PACKAGE WITHIN HATCHED AREA AS SHOWN.
ark is acceptable.
6. ALL dimensons are in nilumeters.
7. Package warpage max 0.01 mm .

[^0]The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.

## Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{M A X 2828 E T N+}$ MAX2828ETN+T MAX2829ETN+ MAX2829ETN+T


[^0]:    Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

