

+3.3V, 2.125Gbps/1.0625Gbps Fibre Channel Port Bypass ICs

Abstract

General Description The MAX3750/MAX3751 are +3.3V, Fibre Channel port bypass ICs that include a high-speed multiplexer and output buffer stage for hot swapping a storage device. These devices are optimized for use in a Fibre Channel arbitrated loop topology. The MAX3750 has a 2.125 Gbps data rate, while the MAX3751's data rate is 1.0625 Gbps . Total power consumption (including output currents) is low: just 190 mW for the MAX3750 and 180mW for the MAX3751. Low 10ps jitter makes these devices ideal for cascaded topologies. The output driver circuitry is tolerant of load mismatches commonly caused by board vias and inductive connectors. On-chip termination reduces external part count and simplifies board layout.

Applications

2.125Gbps Fibre Channel Arbitrated Loop
1.0625Gbps Fibre Channel Arbitrated Loop

Mass Storage Systems
RAID/JBOD Applications

Features

- Single +3.3V Supply
- Low Jitter: 10ps
- Low Power Consumption

190mW (MAX3750)
180mW (MAX3751)

- Large Output Signal Swing: >1000mVp-p
- Mismatch Tolerant Output Driver Stage
- 150Ω Differential On-Chip Termination on All Inputs
- 150Ω On-Chip Back Termination on All Output Ports

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3750CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX3750CEE \dagger	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX3751CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP

\dagger Denotes lead-free package.

THREE MAX3750/MAX3751s CASCADED IN AN FC-AL APPLICATION

Pin Configuration appears at end of data sheet.

+3.3V, 2.125Gbps/1.0625Gbps Fibre Channel Port Bypass ICs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VCC
-0.5 V to +5.0 V
Voltage at LOUT+, LOUT-
OUT+, OUT-
. $\left(V_{C C}-1.65 \mathrm{~V}\right)$ to $\left(V_{C C}+0.5 \mathrm{~V}\right)$
Current Out of LOUT+, LOUT-, OUT+, OUT- $\pm 22 \mathrm{~mA}$
Voltage at SEL, LIN+, LIN-, IN+, IN--0.5V to (VCC +0.5 V)
Differential Voltage at (LIN+-LIN-), (IN+-IN-)...................... $\pm 2 \mathrm{~V}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
16 QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 667 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Soldering Temperature (soldering, 10s)................. $+300^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	MAX3750 (Note 1)		57	84	mA
	MAX3751 (Note 1)		54	78	
Data Input Voltage Swing	Total differential signal, peak-to-peak	200		2200	mV
Differential Input Impedance		132	150	172	Ω
Output Voltage at LOUT \pm and OUT \pm	150Ω load, total differential signal, peak-to-peak	1000		1600	mV
TTL Input Current		-10		10	$\mu \mathrm{A}$
TTL Input Low		-0.3		0.8	V
TTL Input High		2		$\mathrm{V}_{\text {CC }}+0.3$	V

Note 1: Output currents included.

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
Data Rate	MAX3750	2.125		Gbps
	MAX3751	1.0625		
Data Input Voltage Swing	Total differential signal, peak-to-peak	200	2200	mV
Output Edge Speed $\mathrm{IN} \pm \rightarrow \mathrm{OUT} \pm, \mathrm{IN} \pm \rightarrow$ LOUT \pm	MAX3750		160	ps
	MAX3751		325	
Deterministic Jitter$\mathrm{IN} \pm \rightarrow \mathrm{OUT} \pm, \mathrm{IN} \pm \rightarrow \mathrm{LOUT} \pm, \mathrm{LIN} \pm \rightarrow \mathrm{OUT} \pm$	MAX3750, peak-to-peak (Notes 2, 4)		10	ps
	MAX3751, peak-to-peak (Notes 3, 4)		10	
Random Jitter$\mathrm{IN} \pm \rightarrow \mathrm{OUT} \pm, \mathrm{IN} \pm \rightarrow \mathrm{LOUT} \pm, \mathrm{LIN} \pm \rightarrow \mathrm{OUT} \pm$	MAX3750, RMS (Note 2)		1.6	ps
	MAX3751, RMS (Note 3)		1.6	
Prop Delay$\mathrm{IN}_{ \pm} \rightarrow \mathrm{OUT}_{ \pm}, \mathrm{IN} \pm \rightarrow \mathrm{LOUT} \pm, \mathrm{LIN} \pm \rightarrow \mathrm{OUT}_{ \pm}$	MAX3750		300	ps
	MAX3751		442	

Note 2: Input t_{R} and $\mathrm{tF}<150 \mathrm{ps}, 20 \%$ to 80%.
Note 3: Input t_{R} and $t_{F}<300 \mathrm{ps}, 20 \%$ to 80%.
Note 4: Deterministic jitter is measured with 20 bits of the k28.5 pattern (00111110101100000101).

+3.3V, 2.125Gbps/1.0625Gbps
 Fibre Channel Port Bypass ICs

Typical Operating Characteristics
$\left(V_{C C}=3.3 V, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN	NAME	
$1,4,5,8,16$	GND	FUNCTION
2	LOUT +	Noninverted Port Data Output
3	LOUT-	Inverted Port Data Output
6	OUT +	Noninverted Data Output
7	OUT-	Inverted Data Output
9	SEL	Select Input: SEL $=$ Low: IN $\pm \rightarrow$ OUT \pm SEL $=$ High: LIN $\pm \rightarrow$ OUT \pm
10	LIN-	Inverted Port Data Input
11	LIN +	Noninverted Port Data Input
12,13	VCC	Positive Supply Voltage
14	IN-	Inverted Data Input
15	IN+	Noninverted Data Input

+3.3V, 2.125Gbps/1.0625Gbps Fibre Channel Port Bypass ICs

Circuit Description

A simplified block diagram of the single port bypass is shown in Figure 1. IN+ and IN- drive an input buffer (INBUFF) with 150Ω of internal differential input termination. INBUFF drives an output buffer (LOBUFF) and an input to a multiplexer (MUX).
A low TTL input at SEL selects the signal path of INBUFF through MUX to the output buffer (OUTBUFF). When SEL has a high TTL logic level present the signal path is into LIBUFF, through MUX, to OUTBUFF.

Low-Frequency Cutoff

The low-frequency cutoff is determined by the input resistance and the coupling capacitor as illustrated by the following equation:

$$
f C=1 /(2 \pi R C)
$$

In a typical system where $R=150 \Omega$ and $C=100 \mathrm{nF}$, resulting in $\mathrm{f} \mathrm{C}=10 \mathrm{kHz}$.

Layout Techniques

The MAX3750/MAX3751 are high-frequency products. The performance of the circuit is largely dependent upon layout of the circuit board. Use a multilayer circuit board with dedicated ground and VCC planes. Power supplies should be capacitively bypassed to the ground plane with surface-mount capacitors placed near the power-supply pins.

NOTE: SEE INTERNAL INPUT/OUTPUT SCHEMATICS FOR DETALLED TERMINATIONS (FIGURES 2-5).

Figure 1. MAX3750/MAX3751 Block Diagram

+3.3V, 2.125Gbps/1.0625Gbps
 Fibre Channel Port Bypass ICs

Figure 2. LOUT/OUT Pins Internal Input/Output Schematic

Figure 4. LIN/IN Pins Internal Input/Output Schematic

Figure 3. SEL Pin Internal Input/Output Schematic

Figure 5. 50, Termination Applications

+3.3V, 2.125Gbps/1.0625Gbps Fibre Channel Port Bypass ICs

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX3750CEE + MAX3750CEE + T

