MAX4729/MAX4730 Low-Voltage 3.5 Ω, SPDT, CMOS Analog Switches

General Description

The MAX4729/MAX4730 single-pole/double-throw (SPDT) switches operate from a single supply ranging from +1.8 V to +5.5 V . These switches provide low 3.5Ω on-resistance (RON), as well as 0.45Ω RON flatness with a +2.7 V supply. These devices typically consume only 1nA of supply current, making them ideal for use in lowpower, portable applications. The MAX4729/MAX4730 feature low-leakage currents over the extended temperature range, TTL/CMOS-compatible digital logic, and excellent AC characteristics.
The MAX4729/MAX4730 are available in small 6-pin SC70 and 6-pin μ DFN packages. The MAX4729/ MAX4730 are offered in three pinout configurations to ease design. The MAX4729/MAX4730 are specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
\qquad

- Low 3.5 Ω Ron (+2.7V Supply)
- 0.45Ω RoN Flatness (+2.7V Supply)
- 0.05Ω Ron Match Between Channels (+2.7V Supply)
- Tiny SC70 and μ DFN Packages
- -3dB Bandwidth: 300MHz
- Low On-Capacitance: 19.5pF
- 0.036\% Total Harmonic Distortion
- Low Supply Current: 1nA
- +1.8V to +5.5 V Single-Supply Operation

Applications

Battery-Operated Equipment
Audio and Video-Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits
Relay Replacement

Pin Configurations/Functional Diagrams/Truth Table

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

MAX4729/MAX4730

Low-Voltage 3.5 Ω, SPDT, CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to ground.)
V+, IN \qquad
COM, NO, NC (Note 1)..................
Continuous Current (IN, V+, GND)
\qquad
\qquad -0.3 V to (V++0.3V)
\qquad $\mathrm{V}++0.3 \mathrm{~V})$
Continuous Current (COM, NO, NC) .. $\pm 80 \mathrm{~mA}$
Peak Current COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle)............................... $\pm 150 \mathrm{~mA}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ μ DFN (derate $2.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...	W
SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	245 mW
Operating Temperature Range	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	+260

Note 1: Signals on NO, NC, or COM exceeding V+ or GND are clamped by internal diodes. Signals on IN exceeding GND are clamped by an internal diode. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance (Note 6)	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{+} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3.5	5.5	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			5.7	
On-Resistance Match Between Channels (Notes 3, 6)	$\triangle \mathrm{RON}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I} \text { COM }=10 \mathrm{~mA},$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.7 \mathrm{~V}, 1.2 \mathrm{~V}, 2 \mathrm{~V}$ (MAX4729)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05	0.15	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			0.2	
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I} \mathrm{COM}=10 \mathrm{~mA},$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.7 \mathrm{~V}, 1.2 \mathrm{~V}, 2 \mathrm{~V}$ (MAX4730)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	0.34	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			0.37	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I} \mathrm{COM}=10 \mathrm{~mA},$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.7 \mathrm{~V}, 1.2 \mathrm{~V}, 2 \mathrm{~V}$ (MAX4729)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.8	1.5	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			2.2	
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}=10 \mathrm{~mA},$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.7 \mathrm{~V}, 1.2 \mathrm{~V}, 2 \mathrm{~V}$ (MAX4730)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.45	0.95	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			1.3	
NO, NC Off-Leakage Current	INO (OFF), INC (OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	+0.01	+2	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85	-3		+3	
COM On-Leakage Current	ICOM (ON)	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} \text { or }$ $3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3 \mathrm{~V}$, or float	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-3	+0.01	+3	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85	-4		+4	
DIGITAL INPUTS							
Input Logic High	V_{IH}		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85	2.0			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			0.4	V
Input Leakage Current	IIN	V IN $=0 \mathrm{~V}$ or 3.6 V	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85	-1	+0.005	+1	$\mu \mathrm{A}$

MAX4729/MAX4730 Low-Voltage 3.5』, SPDT, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
DYNAMIC							
Turn-On Time (Note 5)	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & C_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 1 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		18	45	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			45	
Turn-Off Time (Note 5)	tOFF	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	26	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			26	
Break-Before-Make (Note 5)		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & C_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 1 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5		ns
			$T_{A}=-40^{\circ} \mathrm{C}$ to +85	1			
Charge Injection	Q	$V_{G E N}=0 V, R_{G E N}=0, C_{L}=1.0 n F$, Figure 3		3			pC
NO, NC Off-Capacitance	C_{NO} (OFF), CNC(OFF)	$f=1 \mathrm{MHz}$, Figure 4		6.5			pF
Switch On-Capacitance	CON	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4		19.5			pF
Off-Isolation (Note 7)	VISO	$\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=$ $50 \Omega, C L=5 p F$, Figure 2	$\mathrm{f}=1 \mathrm{MHz}$	-67			dB
			$\mathrm{f}=10 \mathrm{MHz}$	-45			
On-Channel Bandwidth -3dB	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 2		300			MHz
Crosstalk (Note 8)	V_{C} T	NO or $\mathrm{NC}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{CL}_{\mathrm{L}}=$ $5 p F, R L=50 \Omega$, Figure 2	$\mathrm{f}=1 \mathrm{MHz}$		-67		dB
			$\mathrm{f}=10 \mathrm{MHz}$	-52			
Total Harmonic Distortion	THD	$R_{L}=600 \Omega, V_{N C}$ or $V_{N O}=$ $2 V_{P-p}, f=20 H z$ to 20 kHz	$+25^{\circ} \mathrm{C}$	0.035			\%
POWER SUPPLY							
Power-Supply Range	V+			1.8		5.5	V
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ or 5.5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.001			$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85			1	

Note 2: SC70 and μ DFN parts are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits across the full-temperature range are guaranteed by design and correlation.
Note 3: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON(MIN)}$.
Note 4: RON flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 5: Guaranteed by design.
Note 6: $\mu \mathrm{DFN}$ is guaranteed by design.
Note 7: Off-Isolation = $20 \log 10(\mathrm{VO} / \mathrm{VI})$, where VO is $\mathrm{V}_{C O M}$ and VI is either V_{NC} or V_{NO} from the network analyzer.
Note 8: Crosstalk is measured between the two switches.

MAX4729/MAX4730

Low-Voltage 3.5』, SPDT, CMOS Analog Switches

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON-RESISTANCE vs. VCOM
(${ }^{+}=+5 \mathrm{~V}$)

ON-RESISTANCE vs. VCOM

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

SUPPLY CURRENT
vs. LOGIC INPUT VOLTAGE

ON-RESISTANCE vs. VCOM
($\mathrm{V}_{+}=+3 \mathrm{~V}$)

MAX4729/MAX4730 Low-Voltage 3.5 , SPDT, CMOS Analog Switches

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN			NAME	FUNCTION
MAX4729		MAX4730		
SC70	$\mu \mathrm{DFN}$	SC70/ μ DFN		
1	3	6	IN	Logic-Control Input
2	2	5	V+	Positive Supply Voltage
3	4	2	GND	Ground
4	6	3	NC	Analog Switch Normally Closed Terminal
5	5	4	COM	Analog Switch Common Terminal
6	1	1	NO	Analog Switch Normally Open Terminal

MAX4729/MAX4730

Low-Voltage 3.5 Ω, SPDT, CMOS Analog Switches

Detailed Description

The MAX4729/MAX4730 single-pole/double-throw (SPDT) switches operate from a single supply ranging from +1.8 V to +5.5 V . These switches provide low 3.5Ω on-resistance (RON), as well as 0.45Ω RON flatness with a 2.7 V supply. These devices typically consume only 1 nA of supply current, making them suitable for use in low-power, portable applications. The MAX4729/ MAX4730 feature low-leakage currents over the entire temperature range, TTL/CMOS-compatible digital logic, and excellent AC characteristics.

Applications Information

Digital Control Inputs

The MAX4729/MAX4730 logic inputs accept up to +5.5 V , regardless of supply voltage. For example, with $\mathrm{a}+3.3 \mathrm{~V}$
supply, IN can be driven low to GND and high to +5.5 V , allowing for mixing of logic levels in a system. With a 2.7 V to 3.6 V power-supply voltage range, the logic thresholds are set so $\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ (max) and $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ (min).

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited.

$\mathrm{t}_{\mathrm{BB}}=\mathrm{t}_{\mathrm{ON}(\mathrm{NC})}-\mathrm{t}_{\mathrm{OFF}}(\mathrm{NO}) 0 \mathrm{OR} \mathrm{t}_{\mathrm{BBM}}=\mathrm{t}_{\mathrm{ON}(\mathrm{NO})}-\mathrm{t}_{\mathrm{OFF}}(\mathrm{NC})$
Figure 1. Switching Times

MAX4729/MAX4730 Low-Voltage 3.5 , SPDT, CMOS Analog Switches

Figure 2. Off-Isolation/On-Loss Bandwidth, Crosstalk

IN OV

Figure 3. Charge Injection

Figure 4. NO, NC, and COM Capacitance

MAX4729/MAX4730

Low-Voltage 3.5 Ω, SPDT, CMOS Analog Switches

Chip Information

PROCESS: CMOS

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4729EXT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC 70
MAX4729ELT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mu \mathrm{DFN}$
MAX4730EXT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC 70
MAX4730ELT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mu \mathrm{DFN}$

+Denotes lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC 70	$\mathrm{X} 6 \mathrm{SN}+1$	$\underline{21-0077}$	$\underline{90-0189}$
$6 \mu \mathrm{DFN}$	$\mathrm{L} 611+1$	$\underline{21-0147}$	$\underline{90-0080}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$6 / 14$	ELT+ production status corrected	-

maxim
integrated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{\text { MAX4729ELT }+\mathrm{T}}$ MAX4729EXT +T MAX4730ELT +T MAX4730EXT +T

