# +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 

## General Description

The MAX5102 parallel-input, voltage-output, dual 8-bit digital-to-analog converter (DAC) operates from a single +2.7 V to +5.5 V supply and comes in a space-saving 16-pin TSSOP package. Internal precision buffers swing Rail-to-Rail®, and the reference input range includes both ground and the positive rail. Both DACs share a common reference input.
The MAX5102 has separate input latches for each of its DACs. Data is transferred to the input latches from a common 8-bit input port. The DACs are individually selected through address input AO and are updated by bringing $\overline{W R}$ low.
The MAX5102 features a shutdown mode that reduces current to 1 nA , as well as a power-on reset mode that resets all registers to code 00 hex on power-up.

Applications
Digital Gain and Offset Adjustment
Programmable Attenuators
Portable Instruments
Power-Amp Bias Control
Functional Diagram


- +2.7V to +5.5V Single-Supply Operation
- Ultra-Low Supply Current
0.2 mA while Operating

1nA in Shutdown Mode

- Ultra-Small 16-Pin TSSOP Package
- Ground to VDD Reference Input Range
- Output Buffer Amplifiers Swing Rail-to-Rail
- Power-On Reset Sets All Registers to Zero

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE | INL <br> (LSB) |
| :---: | :--- | :--- | :---: |
| MAX5102AEUE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 TSSOP | $\pm 1$ |
| MAX5102BEUE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 TSSOP | $\pm 2$ |

Pin Configuration


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

## +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

## ABSOLUTE MAXIMUM RATINGS

| $V_{\text {DD }}$ to GND | V to +6 V |
| :---: | :---: |
| D_, A0, WR, SHDN to GND . | -0.3V to +6V |
| REF to GND | -0.3V to (VDD +0.3 V ) |
| OUT_ to GND | -0.3V to V ${ }_{\text {DD }}$ |
| Maximum Current into Any |  |
| Continuous Power Dissipa 16-Pin TSSOP (derate | $\begin{aligned} & \text { C) } \\ & \text { ve }+70^{\circ} \mathrm{C} \text { ) ....... } 457 \mathrm{~mW} \end{aligned}$ |

Operating Temperature Range
MAX5102_EUE .............................................................................. C
Maximum Junction Temperature ................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range................................ $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=V_{R E F}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $V_{D D}=V_{\text {REF }}=+3 V$ and $T_{A}=+25^{\circ} \mathrm{C}$.)


# +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{R E F}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $V_{D D}=V_{\text {REF }}=+3 V_{\text {and }} T_{A}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |
| Output Voltage Slew Rate |  | From code 00 to code F0 hex |  | 0.6 |  | V/us |
| Output Settling Time (Note 3) |  | To 1/2LSB, from code 00 to code F0 hex |  | 6 |  | $\mu \mathrm{s}$ |
| Channel-to-Channel Isolation (Note 4) |  | Code 00 to code FF hex |  | 500 |  | nVs |
| Digital Feedthrough (Note 5) |  | Code 00 to code FF hex |  | 0.5 |  | nVs |
| Digital-to-Analog Glitch Impulse |  | Code 80 hex to code 7F hex |  | 90 |  | nVs |
| Signal-to-Noise plus Distortion Ratio | SINAD | $\begin{aligned} & \mathrm{REF}=2.5 \mathrm{Vp}-\mathrm{p} \text { at } 1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{REF}(\mathrm{DC})}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}, \text { code } \mathrm{FF} \text { hex } \end{aligned}$ |  | 70 |  | dB |
|  |  | $\begin{aligned} & \text { REF }=2.5 \mathrm{Vp}-\mathrm{p} \text { at } 10 \mathrm{kHz}, \mathrm{~V} \mathrm{REF}(\mathrm{DC})=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}, \text { code } \mathrm{FF} \text { hex } \end{aligned}$ |  | 60 |  |  |
| Multiplying Bandwidth |  | $\begin{aligned} & \mathrm{REF}=0.5 \mathrm{Vp}-\mathrm{p}, \mathrm{VREF}(\mathrm{DC})=1.5 \mathrm{~V}, \\ & \mathrm{~V} D \mathrm{DD}=3 \mathrm{~V},-3 \mathrm{~dB} \text { bandwidth } \end{aligned}$ |  | 650 |  | kHz |
| Wideband Amplifier Noise |  |  |  | 60 |  | $\mu \mathrm{V}_{\text {RMS }}$ |
| Shutdown Recovery Time | tSDR | To $\pm 1 / 2 \mathrm{LSB}$ of final value of $\mathrm{V}_{\text {OUT }}$ |  | 13 |  | $\mu \mathrm{s}$ |
| Time to Shutdown | tSDN | $\mathrm{I}_{\mathrm{DD}}<5 \mu \mathrm{~A}$ |  | 20 |  | $\mu \mathrm{s}$ |
| POWER SUPPLIES |  |  |  |  |  |  |
| Power-Supply Voltage | $\mathrm{V}_{\mathrm{DD}}$ |  | 2.7 |  | 5.5 | V |
| Supply Current (Note 6) | IDD |  |  | 190 | 360 | $\mu \mathrm{A}$ |
| Shutdown Current |  |  |  | 0.001 | 1 | $\mu \mathrm{A}$ |
| DIGITAL TIMING (Figure 1) (Note 7) |  |  |  |  |  |  |
| Address to WR Setup | $\mathrm{t}_{\text {AS }}$ |  | 5 |  |  | ns |
| Address to $\overline{\mathrm{WR}}$ Hold | $\mathrm{t}_{\text {AH }}$ |  | 0 |  |  | ns |
| Data to $\overline{\text { WR Setup }}$ | tDS |  | 25 |  |  | ns |
| Data to $\overline{W R}$ Hold | tDH |  | 0 |  |  | ns |
| $\overline{\text { WR Pulse Width }}$ | tWR |  | 20 |  |  | ns |

Note 1: Reduced digital code range (code 00 hex to code FO hex) due to swing limitations when the output amplifier is loaded.
Note 2: Gain error is: [100 ( $\mathrm{V}_{\mathrm{FO} \text {,meas }}$ - ZCE - $\left.\left.\mathrm{V}_{\mathrm{FO} \text {, ideal }}\right) / \mathrm{V}_{\mathrm{REF}}\right]$. Where $\mathrm{V}_{\mathrm{FO} \text {, meas }}$ is the DAC output voltage with input code FO hex, and $\mathrm{V}_{\mathrm{FO} \text {, ideal }}$ is the ideal DAC output voltage with input code FO hex (i.e., $\mathrm{V}_{\text {REF }} \cdot 240 / 256$ ).
Note 3: Output settling time is measured from the $50 \%$ point of the falling edge of $\overline{W R}$ to $\pm 1 / 2$ LSB of Vout's final value.
Note 4: Channel-to-channel isolation is defined as the glitch energy at a DAC output in response to a full-scale step change on any other DAC output. The measured channel has a fixed code of 80 hex.
Note 5: Digital feedthrough is defined as the glitch energy at any DAC output in response to a full-scale step change on all eight data inputs with $\overline{W R}$ at $V_{D D}$.
Note 6: $R_{L}=\infty$, digital inputs at GND or $V_{D D}$.
Note 7: Timing measurement reference level is $\left(\mathrm{V}_{\mathrm{IH}}+\mathrm{V}_{\mathrm{IL}}\right) / 2$.

## +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs



Figure 1. Timing Diagram

Typical Operating Characteristics
$\left(V_{D D}=V_{\text {REF }}=+3 V, R_{L}=10 k \Omega, C_{L}=100 \mathrm{pF}\right.$, code $=F F$ hex, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$


# +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 

## Typical Operating Characteristics (continued)

$\left(V_{D D}=V_{R E F}=+3 V, R_{L}=10 k \Omega, C_{L}=100 \mathrm{pF}\right.$, code $=F F$ hex, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


WORST-CASE 1LSB DIGITAL STEP CHANGE (POSITIVE)

$1 \mu \mathrm{~s} / \mathrm{div}$
$\mathrm{CH} 1=\overline{\mathrm{WR}}, 1 \mathrm{~V} / \mathrm{div}, \mathrm{CH} 2=\mathrm{V}_{\text {OUTA }}, 50 \mathrm{mV} /$ div, AC-COUPLED

$\mathrm{CH}=\overline{\mathrm{WR}}=2 \mathrm{~V} / \mathrm{div}, \mathrm{CH} 2=\mathrm{V}_{\text {OUTA }}=2 \mathrm{~V} / \mathrm{div}$


DIGITAL FEEDTHROUGH GLITCH IMPULSE ( 0 TO 1 DIGITAL TRANSITION)


20ns/div
$\mathrm{CH} 1=\mathrm{D} 7,2 \mathrm{~V} / \mathrm{div}, \mathrm{CH} 2=$ Vouta, $1 \mathrm{mV} /$ div

NEGATIVE SETTLING TIME

$1 \mu \mathrm{~s} / \mathrm{div}$
$\mathrm{CH} 1=\overline{\mathrm{WR}}, 2 \mathrm{~V} /$ div, CH2 $=\mathrm{V}_{\text {OUTA }}, 2 \mathrm{~V} /$ div

WORST-CASE 1LSB DIGITAL STEP CHANGE (NEGATIVE)


2 $\mu$ s/div
$\mathrm{CH}=\overline{\mathrm{WR}}, 1 \mathrm{~V} / \mathrm{div}, \mathrm{CH} 2=\mathrm{V}_{\text {Outa }}, 50 \mathrm{mV} / \mathrm{div}, ~ A C-C O U P L E D$
DIGITAL FEEDTHROUGH GLITCH IMPULSE ( 1 TO 0 DIGITAL TRANSITION)

$\mathrm{CH} 1=\mathrm{D} 7,2 \mathrm{~V} / \mathrm{div}, \mathrm{CH} 2=\mathrm{V}_{\text {OUTA }}, 1 \mathrm{mV} /$ div
INTEGRAL AND DIFFERENTIAL NONLINEARITY vs. DIGITAL CODE


# +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 

| PIN | NAME | FUNCTION |
| :---: | :---: | :--- |
| 1 | VDD $^{\prime}$ | Positive Supply Voltage. Bypass VDD to GND using a 0.1 $\mu$ F capacitor. |
| 2 | REF | Reference Voltage Input |
| 3 | SHDN | Shutdown. Connect SHDN to GND for normal operation. |
| 4 | $\overline{\text { WR }}$ | Write Input (active low). Use $\overline{\text { WR }}$ to load data into the DAC input latch selected by AO. |
| $5-12$ | D7-D0 | Data Inputs |
| 13 | AO | DAC Address Select Bit |
| 14 | GND | Ground |
| 15 | OUTB | DAC B Voltage Output |
| 16 | OUTA | DAC A Voltage Output |

## Detailed Description

## Digital-to-Analog Section

The MAX5102 uses a matrix decoding architecture for the DACs. The external reference voltage is divided down by a resistor string placed in a matrix fashion. Row and column decoders select the appropriate tab from the resistor string to provide the needed analog voltages. The resistor network converts the 8-bit digital input into an equivalent analog output voltage in proportion to the applied reference voltage input. The resistor string presents a codeindependent input impedance to the reference and guarantees a monotonic output.
These devices can be used in multiplying applications. Their voltages are buffered by rail-to-rail op amps connected in a follower configuration to provide a rail-to-rail output (see Functional Diagram).

## Low-Power Shutdown Mode

The MAX5102 features a shutdown mode that reduces current consumption to 1 nA . A high voltage on the SHDN pin shuts down the DACs and the output amplifiers. In shutdown mode, the output amplifiers enter a high-impedance state. When bringing the device out of shutdown, allow $13 \mu$ s for the output to stabilize.

## Output Buffer Amplifiers

The DAC outputs are internally buffered by precision amplifiers with a typical slew rate of $0.6 \mathrm{~V} / \mu \mathrm{s}$. The typical settling time to $\pm 1 / 2 \mathrm{LSB}$ at the output is $6 \mu$ s when loaded with $10 \mathrm{k} \Omega$ in parallel with 100 pF .

Reference Input
The MAX5102 provides a code-independent input impedance on the REF input. Input impedance is typically $460 \mathrm{k} \Omega$ in parallel with 15 pF , and the reference input voltage range is 0 to $V_{D D}$. The reference input accepts positive DC signals, as well as AC signals with peak values between 0 and VDD. The voltage at REF sets the full-scale output voltage for the DAC. The output voltage (VOUT) for any DAC is represented by a digitally programmable voltage source as follows:

$$
\text { VOUT }=\left(N_{B} \cdot V_{\text {REF }}\right) / 256
$$

where $N_{B}$ is the numeric value of the DAC binary input code.

Digital Inputs and Interface Logic
In the MAX5102, address line A0 selects the DAC that receives data from D0-D7, as shown in Table 1. When $\overline{W R}$ is low, the addressed DAC's input latch is transparent. Data is latched when $\overline{W R}$ is high. The DAC outputs (OUTA, OUTB) represent the data held in the two 8-bit

Table 1. MAX5102 Addressing Table
(partial list)

| WR | AO | LATCH STATE |
| :---: | :---: | :---: |


| HR | A0 | LATCH STATE |
| :---: | :---: | :--- |
| $L$ | L | Input data latched |
| $L$ | $H$ | DAC A input latch transparent |

[^0]
# +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 

input latches. To avoid output glitches in the MAX5102, ensure that data is valid before $\overline{W R}$ goes low. When the device powers up (i.e., VDD ramps up), all latches are internally preset with code 00 hex.

## Applications Information

## External Reference

The reference source resistance must be considerably less than the reference input resistance. To keep within 1 LSB error in an 8 -bit system, Rs must be less than RREF/256. Hence, maintain a value of $R S<1 k \Omega$ to ensure 8-bit accuracy. If VREF is DC only, bypass REF to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Values greater than this improve noise rejection.

Power Sequencing
The voltage applied to REF should not exceed VDD at any time. If proper power sequencing is not possible
connect an external Schottky diode between REF and VDD to ensure compliance with the absolute maximum ratings. Do not apply signals to the digital inputs before the device is fully powered up.

## Power-Supply Bypassing and

 Ground ManagementDigital or AC transient signals on GND can create noise at the analog output. Return GND to the highest-quality ground available. Bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor, located as close to VDD and GND as possible.
Careful PC board ground layout minimizes crosstalk between the DAC outputs and digital inputs.

Chip Information
TRANSISTOR COUNT: 6848

## +2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

## Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{M A X 5102 A E U E+}$ MAX5102BEUE + MAX5102AEUE + T MAX5102BEUE + T


[^0]:    $H=$ High state, $L=$ Low state, $X=$ Don't care

