

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

18 February 2014

Product data sheet

1. General description

Logic level gate drive N-channel enhancement mode MOSFET in LFPAK56 package. NextPowerS3 portfolio utilising NXP's unique "SchottkyPlus" technology delivers high efficiency, low spiking performance usually associated with MOSFETs with an integrated Schottky or Schottky-like diode but without problematic high leakage current. NextPowerS3 is particularly suited to high efficiency applications at high switching frequencies.

2. Features and benefits

- Ultra low Q_G, Q_{GD} and Q_{OSS} for high system efficiency, especially at higher switching frequencies
- Superfast switching with soft-recovery; s-factor > 1
- Low spiking and ringing for low EMI designs
- Unique "SchottkyPlus" technology; Schottky-like performance with < 1 µA leakage at 25 °C
- Optimised for 4.5 V gate drive
- Low parasitic inductance and resistance
- High reliability clip bonded and solder die attach Power SO8 package; no glue, no wire bonds, qualified to 175 °C
- Wave solderable; exposed leads for optimal visual solder inspection

3. Applications

- On-board DC-to-DC solutions for server and telecommunications
- Secondary-side synchronous rectification in telecommunication applications
- Voltage regulator modules (VRM)
- Point-of-Load (POL) modules
- Power delivery for V-core, ASIC, DDR, GPU, VGA and system components
- Brushed and brushless motor control

4. Quick reference data

Table 1. Qui	ck reference data						
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	-	30	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 10 V; <u>Fig. 2</u>	[1]	-	-	100	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; <u>Fig. 1</u>		-	-	91	W

PSMN3R0-30YLD

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Tj	junction temperature		-55	-	175	°C
Static chara	acteristics	· · · ·				
R _{DSon}	drain-source on-state resistance	V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; <u>Fig. 10</u>	-	3.2	4	mΩ
		V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; <u>Fig. 10</u>	-	2.57	3.1	mΩ
Dynamic ch	aracteristics					
Q _{GD}	gate-drain charge	V _{GS} = 4.5 V; I _D = 25 A; V _{DS} = 15 V; Fig. 12; Fig. 13	-	4.5	6.7	nC
Q _{G(tot)}	total gate charge	V _{GS} = 4.5 V; I _D = 25 A; V _{DS} = 15 V; Fig. 12; Fig. 13	-	14.5	21.9	nC
Source-drai	in diode	· · · · ·				
S	softness factor	I _S = 25 A; V _{GS} = 0 V; dI _S /dt = -100 A/μs; V _{DS} = 15 V; <u>Fig. 16</u>	-	1.07	-	

[1] Continuous current is limited by package.

5. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source	mb	D
2	S	source		
3	S	source	q	G-UFA
4	G	gate	មុប្បូប្	mbb076 S
mb	D	mounting base; connected to drain	1 2 3 4 LFPAK56; Power- SO8 (SOT669)	

6. Ordering information

Table 3. Ordering in	formation		
Type number	Package		
	Name	Description	Version
PSMN3R0-30YLD	LFPAK56; Power-SO8	Plastic single-ended surface-mounted package (LFPAK56; Power-SO8); 4 leads	SOT669

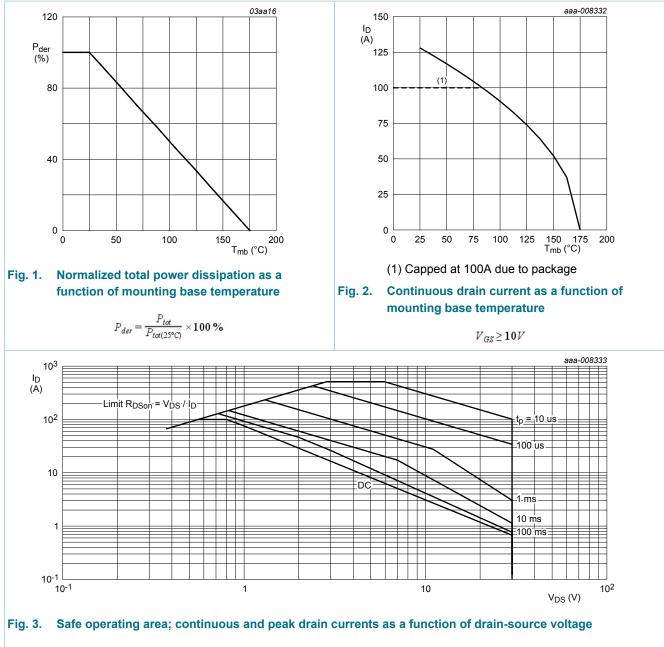
N-channel 30 V, 3.0 m logic level MOSFET in LFPAK56 using **NextPowerS3 Technology**

Marking 7.

Table 4. Marking codes	
Type number	Marking code
PSMN3R0-30YLD	3D030L

Limiting values 8.

Table 5.	Limiting values
In accordar	nce with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	30	V
V _{DGR}	drain-gate voltage	25 °C ≤ T _j ≤ 175 °C; R _{GS} = 20 kΩ		-	30	V
V _{GS}	gate-source voltage			-20	20	V
P _{tot}	total power dissipation	T _{mb} = 25 °C; <u>Fig. 1</u>		-	91	W
I _D	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; <u>Fig. 2</u>	[1]	-	100	А
		V _{GS} = 10 V; T _{mb} = 100 °C; <u>Fig. 2</u>		-	90	Α
I _{DM}	peak drain current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^\circ C$; Fig. 3		-	512	А
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
T _{sld(M)}	peak soldering temperature			-	260	°C
V _{ESD}	electrostatic discharge voltage	НВМ		500	-	V
Source-dra	in diode	1				
ls	source current	T _{mb} = 25 °C		-	76	А
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^\circ C$		-	512	Α
Avalanche	ruggedness	1				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; T _{j(init)} = 25 °C; I _D = 25 A; V _{sup} ≤ 30 V; R _{GS} = 50 Ω; unclamped; t _p = 467 μs	[2]	-	227.5	mJ

[1] Continuous current is limited by package.

Protected by 100% test [2]

NXP Semiconductors

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

 $T_{mb} = 25^{\circ}C; \ I_{DM}$ is a single pulse

9. Thermal characteristics

Table 6. The	rmal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	Fig. 4	-	1.46	1.64	K/W

PSMN3R0-30YLD

© NXP N.V. 2014. All rights reserved

PSMN3R0-30YLD

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{th(j-a)}	thermal resistance	Fig. 5	-	50	-	K/W
	from junction to ambient	<u>Fig. 6</u>	-	125	-	K/W

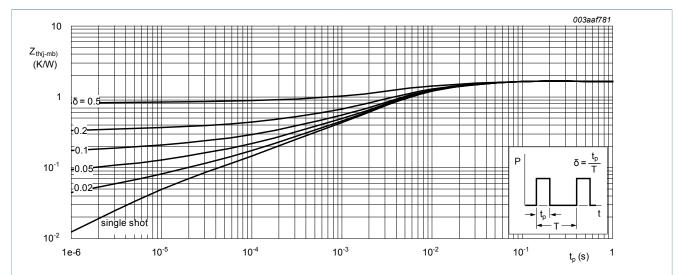
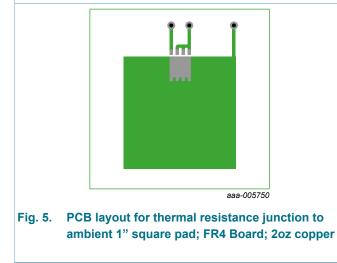



Fig. 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

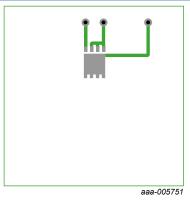
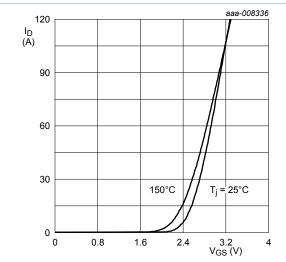


Fig. 6. PCB layout for thermal resistance junction to ambient minimum footprint; FR4 Board; 2oz copper

10. Characteristics

Table 7. C	haracteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara	cteristics					
V _{(BR)DSS}	drain-source	I_D = 250 µA; V_{GS} = 0 V; T_j = 25 °C	30	-	-	V
	breakdown voltage	I_D = 250 µA; V_{GS} = 0 V; T_j = -55 °C	27	-	-	V
V _{GS(th)}	gate-source threshold voltage	I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 25 °C	1.2	1.7	2.2	V

PSMN3R0-30YLD


N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

voltage variation with temperature VDS = 24 V; VOS = 0 V; Tj = 25 °C - - 1 μ A IbSS drain leakage current (SSS) VDS = 24 V; VOS = 0 V; Tj = 25 °C - 0.82 - μ A IdSS gate leakage current (SSS) VOS = 16 V; VDS = 0 V; Tj = 25 °C - - 100 nA VOS = 4.6 V; VDS = 0 V; Tj = 25 °C - - 100 nA VOS = 4.5 V; ID = 25 A; Tj = 25 °C - - 100 nA VOS = 4.5 V; ID = 25 A; Tj = 25 °C; Fig. 10 - - 100 nA VOS = 4.5 V; ID = 25 A; Tj = 150 °C; Fig. 10; ID - - 6.6 mO VOS = 10 V; ID = 25 A; Tj = 150 °C; Fig. 11; Fig. 10 - - 5.1 mO VOS = 10 V; ID = 25 A; Tj = 150 °C; Fig. 11; Fig. 10 - - 5.1 mO Dypamic char	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\begin{tabular}{ c c c c } \hline $V_{DS} = 24 $V; $V_{DS} = 0 $V; $V_{1} = 125 $``C$ & - & 0.82 & - & μ A $V_{DS} = 16 $V; $V_{DS} = 0 $V; $T_{1} = 25 $``C$ & - & - & 100 & n A $V_{CS} = 16 $V; $V_{DS} = 0 $V; $T_{1} = 25 $``C$ & - & - & 100 & n A $V_{CS} = 16 $V; $V_{DS} = 0 $V; $T_{1} = 25 $``C$ & - & - & 100 & n A $V_{CS} = 16 $V; $V_{DS} = 0 $V; $T_{1} = 25 $``C$ & - & - & 100 & n A $V_{CS} = 16 $V; $V_{DS} = 0 $V; $T_{1} = 25 $``C$ & - & - & 100 & n A $V_{CS} = 16 $V; $V_{DS} = 15 $V; $V_{1} = 25 $``C$ & - & - & 0.57 & 1 M D V $V_{CS} = 10 $V; $T_{1} = 25 $``C$ & - & - & 0.57 & 1 M D V $V_{CS} = 10 $V; $T_{1} = 25 $``C$ & - & - & 0.57 & 1 M D V $V_{CS} = 10 $V; $T_{1} = 25 $``C$ & - & 0.57 & 1 M D V $V_{CS} = 10 $V; $T_{1} = 25 $``C$ & - & 0.57 & 1 M D V $V_{CS} = 10 $V; $T_{1} = 25 V $V_{CS} = 10 V V $V_{CS} = 10 V V $V_{CS} = 10 V	ΔV _{GS(th)} /ΔT	voltage variation with	25 °C < T _j < 150 °C	-	-4.3	-	mV/K
LGSS gate leakage current resistance $V_{GS} = 16 \vee; V_{DS} = 0 \vee; T_j = 25 °C$ 100 nA RDSon RDSon Absent resistance drain-source on-state resistance $V_{GS} = 4.5 \vee; I_p = 25 A; T_j = 25 °C;$ Fig. 10 $A.2$ $A.$ MO $V_{GS} = 4.5 \vee; I_p = 25 A; T_j = 150 °C;$ Fig. 10 $V_{GS} = 10 \vee; I_p = 25 A; T_j = 25 °C;$ Fig. 10 $A.$ $A.$ $A.$ $A.$ $A.$ MO $V_{GS} = 10 \vee; I_p = 25 A; T_j = 25 °C;$ Fig. 10 $V_{CS} = 10 \vee; I_p = 25 A; T_j = 150 °C;$ Fig. 10 $A.$ <	I _{DSS}	drain leakage current	V_{DS} = 24 V; V_{GS} = 0 V; T_j = 25 °C	-	-	1	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V_{DS} = 24 V; V_{GS} = 0 V; T_j = 125 °C	-	0.82	-	μA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{GSS}	gate leakage current	V_{GS} = 16 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
$ \begin{array}{ c c c c c c } \mbox{resistance} & \begin{tabular}{ c c c c c c c } \mbox{resistance} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			V_{GS} = -16 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R _{DSon}			-	3.2	4	mΩ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	-	-	6.6	mΩ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	-	2.57	3.1	mΩ
$ \begin{array}{ c c c c } \hline \textbf{Dynamic characteristics} \\ \hline \textbf{Dynamic characteristics} \\ \hline \textbf{Q}_{G[tot]} \\ \hline \textbf{D}_{gamma} \begin{array}{ c c c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \\ \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma} \end{array} \end{array} \end{array} \begin{array}{ c } \hline \textbf{L}_{gamma$			· · · · · · · · · · · · · · · · · · ·	-	-	5.1	mΩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R _G	gate resistance	f = 1 MHz	-	0.57	1.14	Ω
$ \begin{array}{c} Fig. 12; Fig. 13 \\ \hline fig. 12; Fig. 10 \\ \hline fig. 12; Fig. 13 \\ \hline fig. 12; Fig. 14 \\ \hline fig. 12; Fig. 14 \\ \hline fig. 12; Fig. 14 \\ \hline fig. 12; Fig. 15 V; V_{GS} = 0 V; f = 1 MHz; \\ fig. 12; Fig. 12; Fig. 14 \\ \hline fig. 14 \\ \hline$	Dynamic cha	racteristics					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q _{G(tot)}	total gate charge		-	31	46.4	nC
QGS gate-source charge ID = 25 A; VDS = 15 V; VGS = 4.5 V; Fig. 12; Fig. 13 - 4.9 - nC QGS(th) pre-threshold gate- source charge post-threshold gate- source charge - 4.9 - nC QGS(th-pl) post-threshold gate- source charge post-threshold gate- source charge - 4.9 - nC QGD gate-drain charge - 4.5 6.7 nC VGS(pl) gate-source plateau voltage ID = 25 A; VDS = 15 V; Fig. 12; Fig. 13 - 4.5 6.7 nC Ciss input capacitance VDS = 15 V; VGS = 0 V; f = 1 MHz; T = 25 °C; Fig. 14 - 1959 2939 pF Coss output capacitance VDS = 15 V; VGS = 0 V; f = 1 MHz; T = 25 °C; Fig. 14 - 1029 1543 pF Crss reverse transfer capacitance VDS = 15 V; RL = 0.6 \Omega; VGS = 4.5 V; T, r - 140 210 pF td(off) turn-off delay time VDS = 15 V; RL = 0.6 \Omega; VGS = 4.5 V; T, G(ext) = 5 \Omega - 16.9 - ns				-	14.5	21.9	nC
QGS(th) pre-threshold gate-source charge Fig. 12; Fig. 13 Image: Construct of the source charge Image: Consource charge Image: Construct			$I_D = 0 A; V_{DS} = 0 V; V_{GS} = 10 V$	-	28.5	-	nC
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q _{GS}	gate-source charge	I_D = 25 A; V_{DS} = 15 V; V_{GS} = 4.5 V;	-	4.9	-	nC
source charge source charge Image	Q _{GS(th)}		Fig. 12; Fig. 13	-	2.9	-	nC
VGS (p1) gate-source plateau voltage ID = 25 A; VDS = 15 V; Fig. 12; Fig. 13 - 2.75 - V Ciss input capacitance VDS = 15 V; VGS = 0 V; f = 1 MHz; - 1959 2939 pF Coss output capacitance VDS = 15 V; VGS = 0 V; f = 1 MHz; - 1029 1543 pF Coss output capacitance VDS = 15 V; RL = 0.6 \Omega; VGS = 4.5 V; - 140 210 pF td(on) turn-on delay time VDS = 15 V; RL = 0.6 \Omega; VGS = 4.5 V; - 13.5 - ns t_r rise time VDS = 15 V; RL = 5 \Omega - 21 - ns t_d(off) turn-off delay time VDS = 5 Ω - 16.9 - ns	Q _{GS(th-pl)}		-	-	2	-	nC
voltagevoltageImageImageImageImageImageC_{iss}input capacitance $V_{DS} = 15 V; V_{GS} = 0 V; f = 1 MHz;$ $T_j = 25 °C; Fig. 14$ -19592939pFC_{oss}output capacitance $T_j = 25 °C; Fig. 14$ -10291543pFC_{rss}reverse transfer capacitance-140210pFt_d(on)turn-on delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ $R_{G(ext)} = 5 \Omega$ -13.5-nst_d(off)turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ $R_{G(ext)} = 5 \Omega$ -16.9-ns	Q _{GD}	gate-drain charge		-	4.5	6.7	nC
C_{oss} output capacitance $T_j = 25 \ ^{\circ}C; Fig. 14$ $ 1029$ 1543 pF C_{rss} reverse transfer capacitance $ 1029$ 1543 pF $t_{d(on)}$ turn-on delay time $V_{DS} = 15 \ V; R_L = 0.6 \ \Omega; V_{GS} = 4.5 \ V;$ $R_{G(ext)} = 5 \ \Omega$ $ 13.5$ $ ns$ $t_{d(off)}$ turn-off delay time $V_{DS} = 15 \ V; R_L = 0.6 \ \Omega; \ V_{GS} = 4.5 \ V;$ $R_{G(ext)} = 5 \ \Omega$ $ 13.5$ $ ns$	V _{GS(pl)}		I _D = 25 A; V _{DS} = 15 V; <u>Fig. 12</u> ; <u>Fig. 13</u>	-	2.75	-	V
C_{rss} reverse transfer capacitance $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 140 210 pF $t_{d(on)}$ turn-on delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(onf)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(off)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(off)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(off)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(off)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(off)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 4.5 V;$ - 13.5 - ns $t_{q(off)}$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 1.5 V;$ - 16.9 - ns	C _{iss}	input capacitance		-	1959	2939	pF
Los capacitance V V Capacitance Image: Capacitance Ima	C _{oss}	output capacitance	T _j = 25 °C; <u>Fig. 14</u>	-	1029	1543	pF
trrise timeRG(ext) = 5 Ω -21-nstd(off)turn-off delay time-16.9-ns	C _{rss}			-	140	210	pF
$t_{d(off)} \qquad turn-off delay time \qquad \qquad$	t _{d(on)}	turn-on delay time		-	13.5	-	ns
	t _r	rise time	$R_{G(ext)} = 5 \Omega$	-	21	-	ns
t _f fall time - 12.4 - ns	t _{d(off)}	turn-off delay time		-	16.9	-	ns
	t _f	fall time		-	12.4	-	ns

PSMN3R0-30YLD

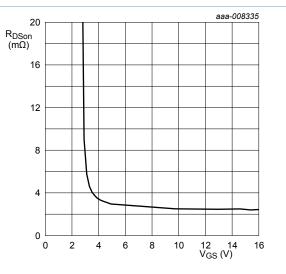
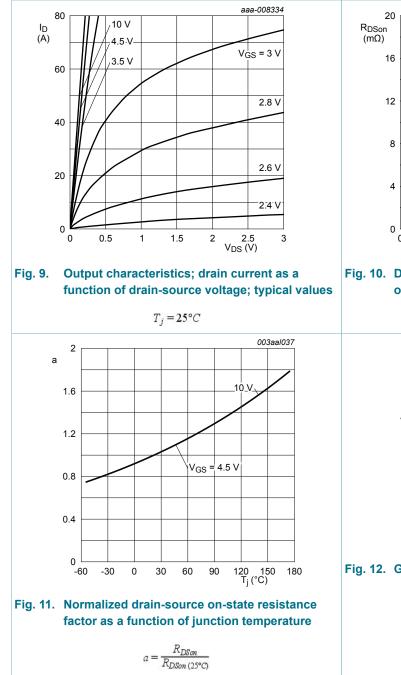
N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

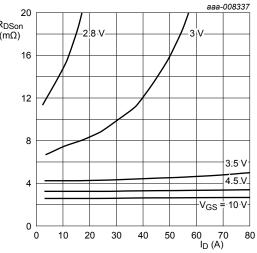
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Q _{oss}	output charge	V _{GS} = 0 V; V _{DS} = 15 V; f = 1 MHz; T _j = 25 °C		-	21.8	-	nC
Source-dra	in diode	1				1	
V _{SD}	source-drain voltage	I_{S} = 25 A; V_{GS} = 0 V; T_{j} = 25 °C; <u>Fig. 15</u>		-	0.82	1.2	V
t _{rr}	reverse recovery time	I_{S} = 25 A; dI _S /dt = -100 A/µs; V _{GS} = 0 V;		-	29.2	58.3	ns
Q _r	recovered charge	V _{DS} = 15 V; <u>Fig. 16</u>	[1]	-	19	38.1	nC
t _a	reverse recovery rise time			-	14.1	-	ns
t _b	reverse recovery fall time			-	15.1	-	ns
S	softness factor			-	1.07	-	

[1]

includes capacitive recovery

 $T_j = 25^{\circ}C; V_{DS} = 10V$


Fig. 8. Drain-source on-state resistance as a function of gate-source voltage; typical values

 $T_j = 25^{\circ}C; \ I_D = 25A$

NXP Semiconductors

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

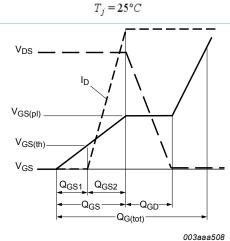
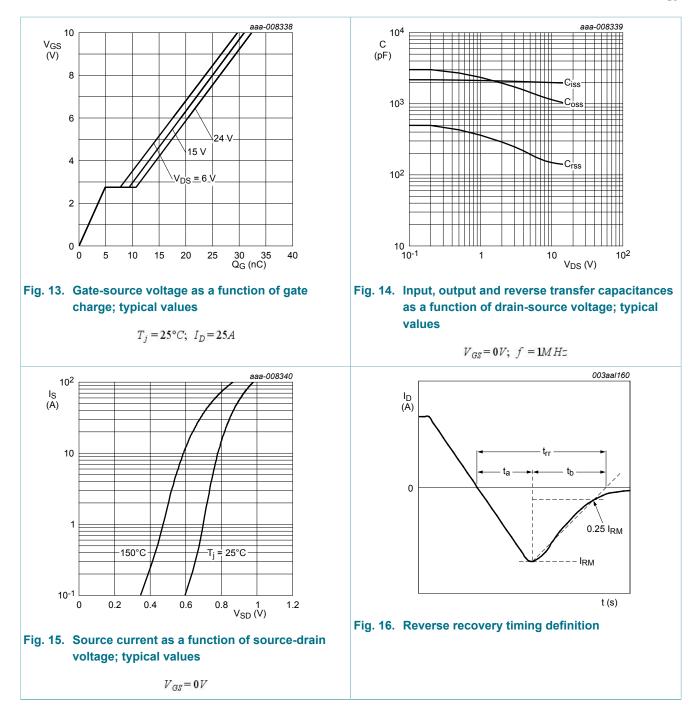
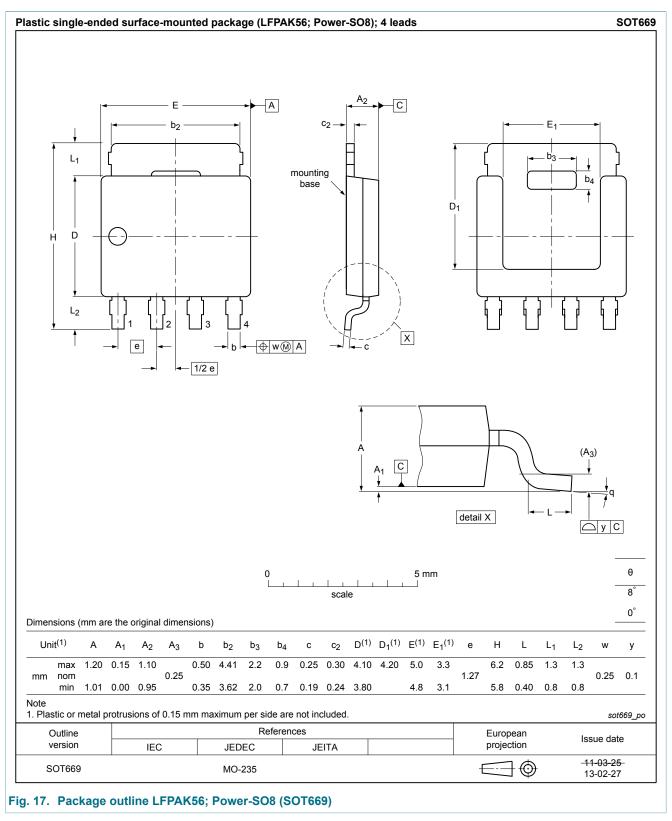



Fig. 12. Gate charge waveform definitions


NXP Semiconductors

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

11. Package outline

PSMN3R0-30YLD

All information provided in this document is subject to legal disclaimers.

Product data sheet

© NXP N.V. 2014. All rights reserved

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

12. Legal information

12.1 Data sheet status

Document status [1][2]	Product status [<u>3]</u>	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

12.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the

PSMN3R0-30YLD

© NXP N.V. 2014. All rights reserved

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

N-channel 30 V, 3.0 mΩ logic level MOSFET in LFPAK56 using NextPowerS3 Technology

13. Contents

1	General description	1
2	Features and benefits	
3	Applications	1
4	Quick reference data	
5	Pinning information	2
6	Ordering information	
7	Marking	
8	Limiting values	3
9	Thermal characteristics	4
10	Characteristics	5
11	Package outline	10
12	Legal information	11
12.1	Data sheet status	
12.2	Definitions	11
12.3	Disclaimers	11
12.4	Trademarks	12

© NXP N.V. 2014. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 18 February 2014

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: PSMN3R0-30YLDX