NPN Silicon Planar Epitaxial Transistor

This NPN Silicon Epitaxial transistor is designed for use in linear and switching applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- PNP Complement is PZT2907AT1
- The SOT-223 Package Can be Soldered Using Wave or Reflow
- SOT-223 Package Ensures Level Mounting, Resulting in Improved Thermal Conduction, and Allows Visual Inspection of Soldered Joints
- The Formed Leads Absorb Thermal Stress During Soldering, Eliminating the Possibility of Damage to the Die
- Available in 12 mm Tape and Reel
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

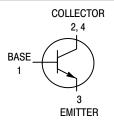
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage (Open Collector)	V _{EBO}	6.0	Vdc
Collector Current	I _C	600	mAdc
Total Power Dissipation up to T _A = 25°C (Note 1)	P _D	1.5	W
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Junction Temperature	TJ	150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

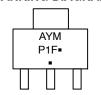
Device mounted on an epoxy printed circuit board 1.575 inches x 1.575 inches x 0.059 inches; mounting pad for the collector lead min. 0.93 inches².

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	T _L	260 10	°C Sec



ON Semiconductor®


http://onsemi.com

SOT-223 PACKAGE NPN SILICON TRANSISTOR SURFACE MOUNT

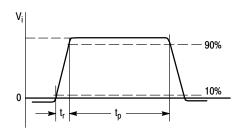
MARKING DIAGRAM

A = Assembly Location

Y = Year M = Month Code

= Pb-Free Package(Note: Microdot may be in either location)

ORDERING INFORMATION


Device	Package	Shipping [†]
PZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
SPZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
PZT2222AT3G	SOT-223 (Pb-Free)	4,000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)		Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ((c = 10 μAdc, lc = 0)	OFF CHARACTE	RISTICS				
Emitter - Base Breakdown Voltage ([e = 10 μAdc, lo = 0)	Collector-Emitter	Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Base-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = -3.0 Vdc)	Collector-Base B	reakdown Voltage (I _C = 10 μAdc, I _E = 0)	V _{(BR)CBO}	75	-	Vdc
Collector-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc) I _{CEX} - 10 nAdd	Emitter-Base Bre	eakdown Voltage (I _E = 10 μAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Emitter - Base Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	Base-Emitter Cut	toff Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc)	I _{BEX}	-	20	nAdc
Collector-Base Cutoff Current V(S _B = 60 Vdc, _E = 0) - 10 nAdd V(S _B = 60 Vdc, _E = 0) - 10 nAdd v(S _B = 60 Vdc, _E = 0, T _A = 125°C) - 10 nAdd v(S _B = 60 Vdc, _E = 0, T _A = 125°C) - 10 nAdd v(S _B = 0 Vdc, _E = 0, T _A = 125°C) - 10 nAdd v(S _B = 10 Vdc) - 10 nAdd v(S _E = 10 Vdc) - 10	Collector-Emitter	Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc)	I _{CEX}	-	10	nAdc
(V _{CB} = 60 Vdc, _E = 0) (V _{CB} = 60 Vdc, _E = 0) (V _{CB} = 60 Vdc, _E = 0) (V _{CB} = 60 Vdc, _E = 0.0 T _A = 125°C) (V _{CB} = 60 Vdc, _E = 0.0 T _A = 125°C) (V _{CB} = 10 Vdc) (V _{CB}	Emitter-Base Cur	toff Current (V _{EB} = 3.0 Vdc, I _C = 0)	I _{EBO}	-	100	nAdo
DC Current Gain C(c = 0.1 mAdc, V _{CE} = 10 Vdc) C(c = 1.0 mAdc, V _{CE} = 10 Vdc) C(c = 1.0 mAdc, V _{CE} = 10 Vdc) C(c = 1.0 mAdc, V _{CE} = 10 Vdc) C(c = 1.0 mAdc, V _{CE} = 10 Vdc) C(c = 150 mAdc, V _{CE} = 10 Vdc) C(c = 150 mAdc, V _{CE} = 10 Vdc) C(c = 150 mAdc, V _{CE} = 10 Vdc) C(c = 500 mAdc, V _{CE} = 10 Vdc) C(c = 10 mAdc, V _{CE} = 10 Vdc) C(c = 10 mAdc, V _{CE} = 10 Vdc) C(c = 10 mAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 Vdc) C(c = 10 MAdc, V _{CE} = 10 MAdc) C(c = 10 MAdc, V _{CE} = 10 MAdc) C(c = 10 MAdc, V _{CE} = 10 MAdc) C(c = 10 MAdc, V _{CE} = 10 MAdc) C(c = 10 MAdc, V _{CE} = 10 MAdc, V _C	$(V_{CB} = 60 \text{ Vdc},$	I _E = 0)	Ісво	- -		nAdc μAdc
(I _C = 0.1 mAdc, V _{CE} = 10 Vdc) S0	ON CHARACTER	ISTICS	·			
(I _C = 150 mAdc, I _B = 15 mAdc)	$(I_{\rm C}=0.1~{\rm mAdc})$ $(I_{\rm C}=1.0~{\rm mAdc})$ $(I_{\rm C}=10~{\rm mAdc})$ $(I_{\rm C}=150~{\rm mAdc})$ $(I_{\rm C}=150~{\rm mAdc})$, $V_{CE} = 10 \text{ Vdc}$) $V_{CE} = 10 \text{ Vdc}$) $V_{CE} = 10 \text{ Vdc}$, $T_{A} = -55^{\circ}\text{C}$) $v_{CE} = 10 \text{ Vdc}$) $v_{CE} = 1.0 \text{ Vdc}$)	h _{FE}	50 70 35 100 50	- 300 -	-
(I _C = 150 MAdc, I _B = 15 MAdc) 0.6 1.2 (I _C = 500 MAdc, I _B = 50 mAdc) A - 2.0 Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz) 2.0 8.0 0.25 1.25 Voltage Feedback Ratio (V _{CE} = 10 Vdc, I _C = 10 mAdc, f = 1.0 kHz) + - 8.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 4.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 4.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 4.0x10 ⁻⁴ - 4.0x10 ⁻⁴ - 9.0x10 ⁻⁴ - 8.0x10 ⁻⁴ - 3.00 - - 3.00 - - 8.0x10 ⁻⁴ - 9.0x10 ⁻⁴ <	$(I_C = 150 \text{ mAdd})$	c, I _B = 15 mAdc)	V _{CE(sat)}	- -		Vdc
Voc 10 Vdc, C 1.0 mAdc, f 1.0 kHz) 2.0 8.0 0.25 1.25 Voltage Feedback Ratio Voc 10 mAdc, f 1.0 kHz) - 8.0x10^{-4} - 4.0x10^{-4} Small—Signal Current Gain Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) - 4.0x10^{-4} Small—Signal Current Gain Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 50 300 75 375 Output Admittance Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 5.0 35 200 Noise Figure (Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 5.0 35 200 Noise Figure (Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 75 200 Output Admittance Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 75 200 Noise Figure (Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 75 200 Output Admittance 75 200 200 Noise Figure (Voc 10 Vdc, C 10 mAdc, f 1.0 kHz) 75 200 Output Admittance 75 200 200 Noise Figure (Voc 10 Vdc, C 100 mAdc, f 1.0 kHz) 75 200 Output Capacitance (Voc 10 Vdc, C 100 mAdc, f 1.0 kHz) 75 200 Output Capacitance (Voc 10 Vdc, C 100 mAdc, f 1.0 mAdc) 75 75 75 Output Capacitance (Voc 10 Vdc, C 100 mAdc, f 1.0 mAdc) 75 75 75 75 Output Capacitance (Voc 10 Vdc, C 100 mAdc, f 1.0 mAdc	$(I_C = 150 \text{ mAdd})$	c, I _B = 15 mAdc)	V _{BE(sat)}			Vdc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(V _{CE} = 10 Vdc,	= '	h _{ie}			kΩ
	(V _{CE} = 10 Vdc,	$I_C = 1.0 \text{ mAdc, } f = 1.0 \text{ kHz}$	h _{re}			-
	(V _{CE} = 10 Vdc,	$I_C = 1.0 \text{ mAdc, } f = 1.0 \text{ kHz}$	h _{fe}			-
Current-Gain - Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$) Expected by the control of t	(V _{CE} = 10 Vdc,	$I_C = 1.0 \text{ mAdc, } f = 1.0 \text{ kHz}$	h _{oe}			μmho
	Noise Figure (V_{CI}	$_{E}$ = 10 Vdc, I_{C} = 100 μ Adc, f = 1.0 kHz)	F	_	4.0	dB
$ (I_{C} = 20 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}) \\ \text{Output Capacitance } (V_{CB} = 10 \text{ Vdc}, I_{E} = 0, f = 1.0 \text{ MHz}) \\ \text{Input Capacitance } (V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz}) \\ \text{SWITCHING TIMES } (T_{A} = 25^{\circ}\text{C}) \\ \text{Delay Time} \\ \text{Rise Time} \\ \text{Rise Time} \\ \text{Storage Time} \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1} \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1} \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1} \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1} \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc}, \\ Figure 1 \\ \text{($V_{CC} = 30 \text{ Vdc}, I_{C} = 150 $	DYNAMIC CHARA	ACTERISTICS				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			f _T	300	-	MHz
	Output Capacitan	ice (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _c		8.0	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	e (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _e	_	25	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING TIME	ES (T _A = 25°C)				
Rise Time Figure 1 t_r – 25 Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{B(off)} = 15 \text{ mAdc})$ $I_{B(off)} = I_{B(off)} = 15 \text{ mAdc}$	Delay Time		t _d	_	10	ns
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{S} - 225 \text{ ns}$ $I_{B(on)} = I_{B(off)} = 15 \text{ mAdc})$	Rise Time		t _r	_	25	
$I_{B(on)} = I_{B(off)} = 15 \text{ mAdc}$	Storage Time	<u> </u>		_	225	ns
		$I_{B(on)} = I_{B(off)} = 15 \text{ mAdc}$				

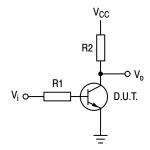
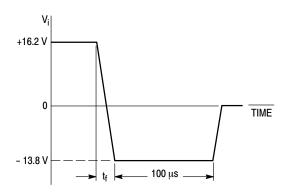



Figure 1. Input Waveform and Test Circuit for Determining Delay Time and Rise Time

 V_i = - 0.5 V to +9.9 V, V_{CC} = +30 V, R1 = 619 Ω , R2 = 200 Ω .

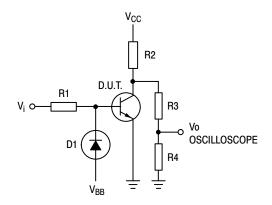


Figure 2. Input Waveform and Test Circuit for Determining Storage Time and Fall Time

TYPICAL CHARACTERISTICS

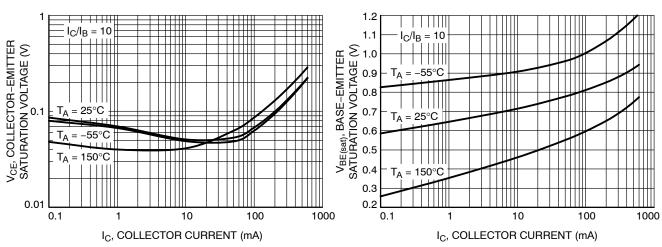


Figure 3. Collector Emitter Saturation Voltage vs. Collector Current

Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

TYPICAL CHARACTERISTICS

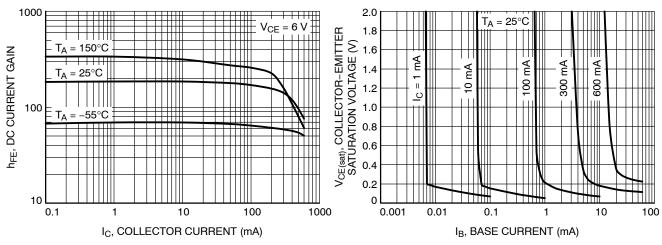


Figure 5. DC Current Gain vs. Collector Current

Figure 6. Saturation Region

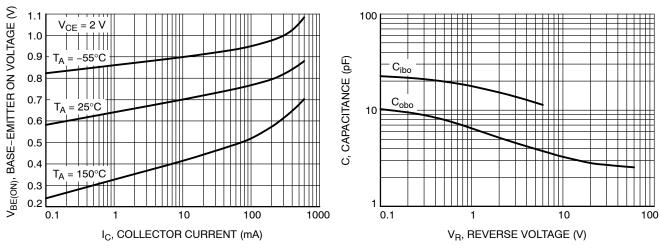
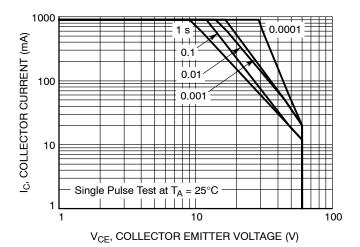
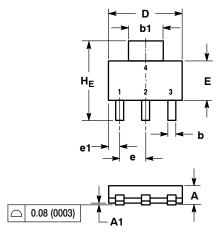
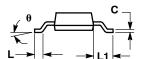


Figure 7. Base-Emitter Turn-On Voltage vs.
Collector Current

Figure 8. Capacitance

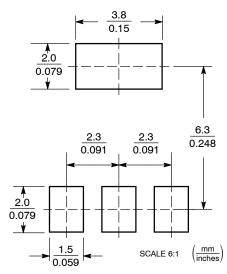

Figure 9. Safe Operating Area

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

ISSUE N

DIMENSIONING AND TOLERANCING PER ASME Y14.5M,


	CONTROLLING DIMENSION. INCH.					
	M	ILLIMETE	RS	INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	-	10°

STYLE 1: PIN 1. BASE

2. COLLECTOR 3. EMITTER

COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, ON semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications the polar or other applications intended to surgical implications which the failure of the SCILLC expects existing where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: SPZT2222AT1G