

STL11N4LLF5

N-channel 40 V, 9.1 mΩ typ., 15 A STripFET[™]V Power MOSFET in a PowerFLAT[™] 3.3 x 3.3 package

Features

Order code	V _{DS}	R _{DS(on)} max	I _D
STL11N4LLF5	40 V	9.7 mΩ	15 A

- Low gate charge
- Very low on-resistance
- High avalance ruggedeness

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using STMicroelectronics' STripFET™V technology. The device has been optimized to achieve very low on-state resistance, contributing to a FOM that is among the best in its class. Datasheet – production data

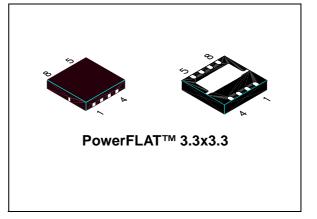
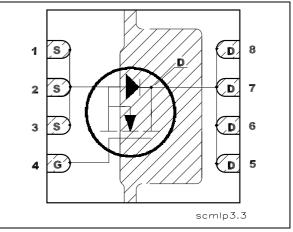



Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STL11N4LLF5	11N4LLF5	PowerFLAT™ 3.3 x 3.3	Tape and reel

Doc ID 024286 Rev 1

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	3

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} = 25 °C	11	Α
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} =100 °C	6.8	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	44	Α
P _{TOT} ⁽³⁾	Total dissipation at T _C = 25 °C	50	W
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	2.9	W
	Derating factor ⁽³⁾	0.4	W/°C
T _J T _{stg}	Operating junction temperature storage temperature	-55 to 150	°C

1. The value is rated according Rthj-pcb

2. Pulse width limited by safe operating area.

3. The vaule is rated according Rthj-c

	Table 3.	Thermal resistance
--	----------	--------------------

Symbol	Symbol Parameter		Unit
R _{thj-case}	Thermal resistance junction-case	2.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	42.8	°C/W
R _{thj-pcb} ⁽²⁾	Thermal resistance junction-pcb	63.5	°C/W

1. When mounted on FR-4 board of 1inch² , 2oz Cu, t < 10sec

2. Steady state

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{\rm D} = 250 \ \mu {\rm A}, \ {\rm V}_{\rm GS} = 0$	40			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 40 V, V _{DS} = 40 V, T _C =125 °C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		2.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 5.5 A V _{GS} = 4.5 V, I _D = 5.5 A		9.1 10.6	9.7 12	mΩ mΩ

Table 4. On/off states

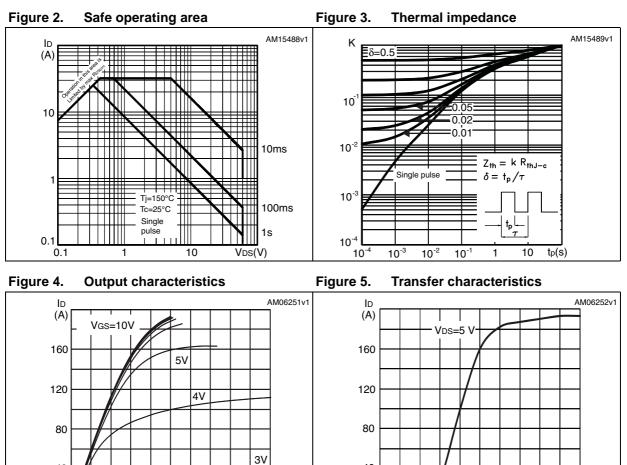
Table 5. Dynamic

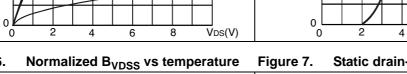
	Dynamie					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0		1570 257 32		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V _{DD} =15 V, I _D = 11 A V _{GS} =4.5 V (see Figure 14)		12.9 3.9 5.3		nC nC nC
R _G	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20 mV $I_D=0$	0.5	1.5	2.5	Ω

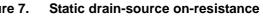
Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} =15 V, I _D = 5.5 A, R _G =4.7 Ω , V _{GS} =4.5 V (see Figure 13)	-	14 42 37 5.2	-	ns ns ns ns

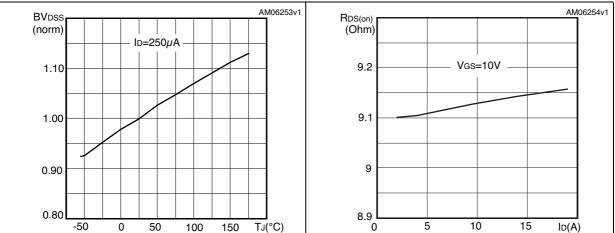
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		11	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	Α
$V_{SD}^{(2)}$	Forward on voltage	I _{SD} =11 A, V _{GS} =0	-		1.1	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} =11 A, di/dt = 100 A/μs, V _{DD} =20 V, Tj=150 °C (see Figure 18)	-	27.2 24.5 1.8		ns nC A


 Table 7.
 Source drain diode


1. Pulse width limited by safe operating area.


2. Pulsed: pulse duration=300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)



6

8

VGS(V)

40

40

Figure 6.

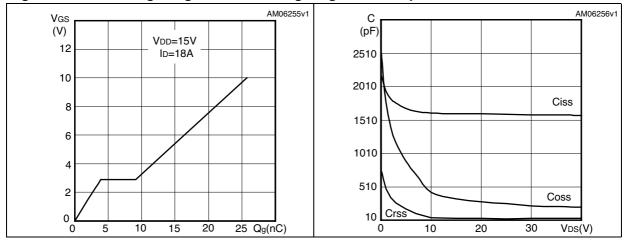


Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Norm vs temperature temp

Normalized on-resistance vs temperature

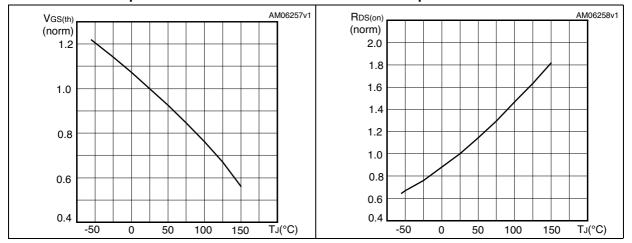
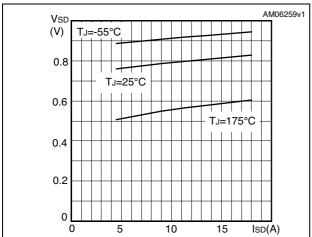



Figure 12. Source-drain diode forward characteristics

57

 $1 k\Omega$

3 Test circuits

Figure 13. Switching times test circuit for resistive load

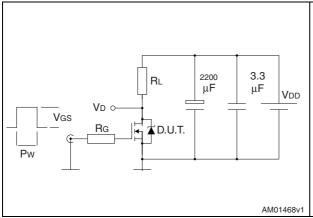
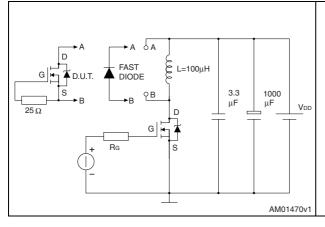
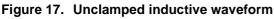
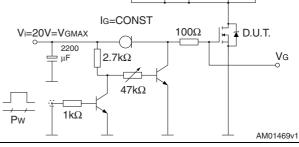




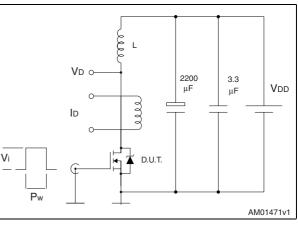
Figure 15. Test circuit for inductive load switching and diode recovery times



VD

IDM

lр


 $47 k\Omega$

<u></u>∔100nF

Figure 14. Gate charge test circuit

12V

Figure 16. Unclamped inductive load test circuit

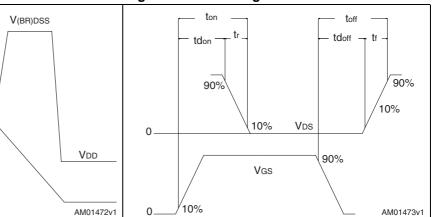


Figure 18. Switching time waveform

Doc ID 024286 Rev 1

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim.		mm	
Dini.	Min.	Тур.	Max.
А	0.80	0.90	1.00
A1	0		0.05
A3		0.20	
b	0.23		0.38
D	3.20	3.30	3.40
D2	2.50		2.75
E	3.20	3.30	3.40
E2	1.25		1.50
е		0.65	
L	0.30		0.50

Table 8. PowerFLAT[™] 3.3 x 3.3 mechanical data

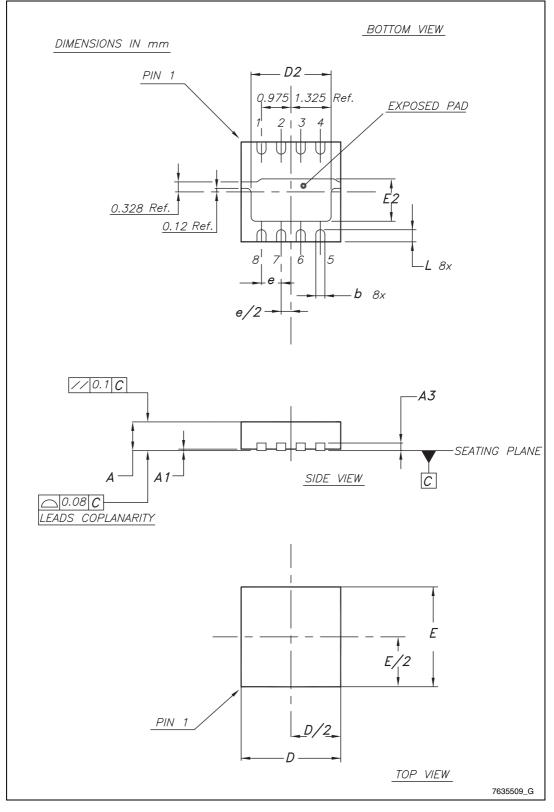


Figure 19. PowerFLAT[™] 3.3 x 3.3 drawing

Doc ID 024286 Rev 1

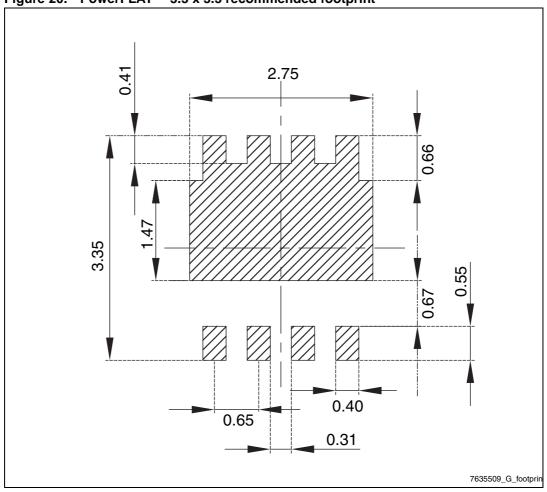


Figure 20. PowerFLAT[™] 3.3 x 3.3 recommended footprint

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
19-Feb-2013	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 024286 Rev 1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL11N4LLF5