STD46N6F7

N-channel 60 V, 0.012 Ω typ., 15 A STripFET™ F7 Power MOSFET in a DPAK package

Datasheet - production data

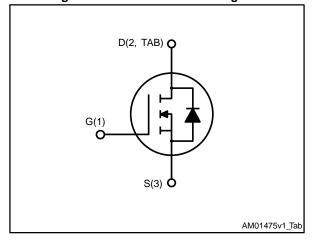



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STD46N6F7	60 V	0.014 Ω	15 A

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STD46N6F7	46N6F7	DPAK	Tape and reel

Contents STD46N6F7

Contents

1	Electrical ratings				
2	Electric	al characteristics	4		
	2.1	Electrical characteristics (curves)	5		
3	Test cir	cuits	7		
4	Packag	e information	8		
	4.1	DPAK(TO-252) type A package information	8		
	4.2	Packing information	11		
5	Revisio	n history	13		

STD46N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	60	V	
V_{GS}	Gate-source voltage	± 20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	15	Α	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	15	Α	
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	60	Α	
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	60	W	
Tj	Operating junction temperature range	55 to 175	°C	
T _{stg}	Storage temperature range	-55 to 175 °C		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	50	°C/W
R _{thj-case}	Thermal resistance junction-case max.	2.5	°C/W

Notes:

 $[\]ensuremath{^{(1)}}\xspace$ This value is limited by package and rated according to $R_{thj\text{-}c}$

⁽²⁾Pulse width limited by safe operating area

 $^{^{(1)}\!} When$ mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec

Electrical characteristics STD46N6F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	60			٧
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V V _{DS} = 60 V			1	μA
I _{GSS}	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 7.5 A		0.012	0.014	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1035	-	pF
Coss	Output capacitance	$V_{DS} = 30 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	ı	450	1	pF
Crss	Reverse transfer capacitance	VGS - 0 V	-	53	-	pF
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_D = 15 \text{ A},$	-	17	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 14:	ı	5.7	ı	nC
Q _{gd}	Gate-drain charge	"Test circuit for gate charge behavior")	ı	5.7	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 30 V, I _D = 7.5 A,	1	14.5	ı	ns
tr	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$ (see	-	15.3	-	ns
t _{d(off)}	Turn-off delay time	Figure 13: "Test circuit for	-	19.4	-	ns
tf	Fall time	resistive load switching times")	1	8	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 15 A, V _{GS} = 0 V	ı		1.2	V
t _{rr}	Reverse recovery time	$I_D = 15 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	26.8		ns
Qrr	Reverse recovery charge	V _{DD} = 48 V (see Figure 15: "Test circuit for inductive load	-	14.2		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	1.06		А

Notes:

 $^{(1)}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

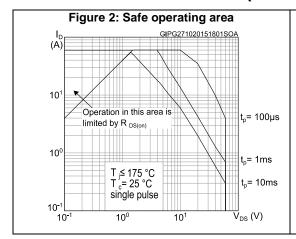
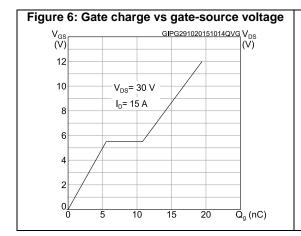
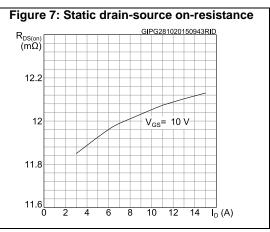




Figure 3: Thermal impedance $K \\ \delta = 0.5 \\ 0.2 \\ 0.1 \\ 10^{-1} \\ 0.05 \\ 0.02 \\ 0.01 \\ Single pulse \\ 10^{-2} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \\ 10^{$

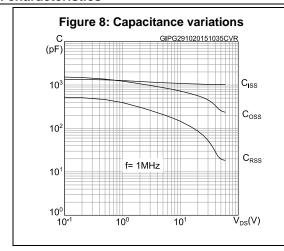


Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)}
(norm.)

1.1

0.9

0.8

I_D=250 µA

0.7

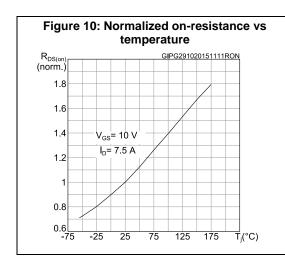
0.6

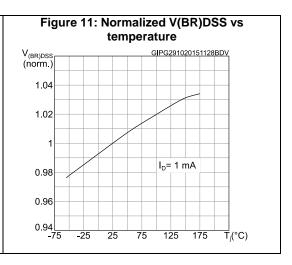
0.5

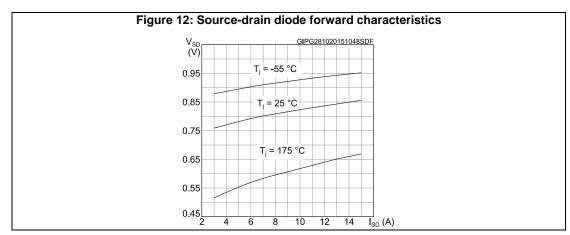
0.4

-75

-25


25


75


125

175

T_j(°C)

STD46N6F7 Test circuits

3 Test circuits

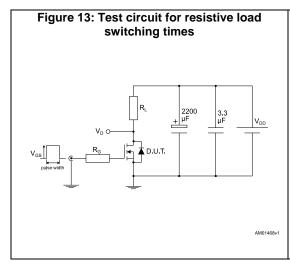
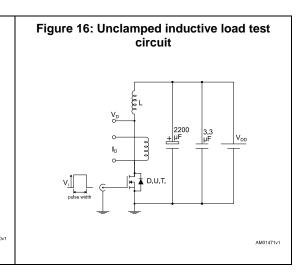
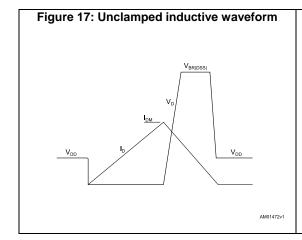
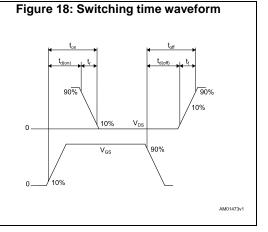





Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK(TO-252) type A package information

THERMAL PAD

OGENTIS A. 20

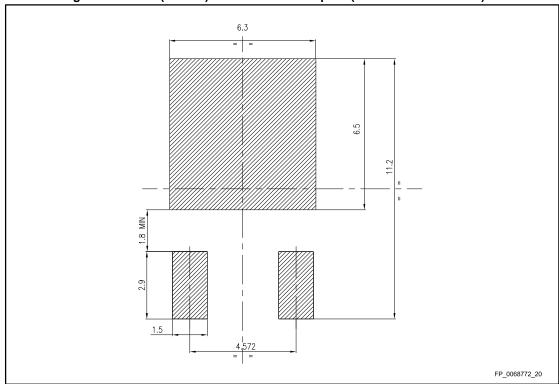
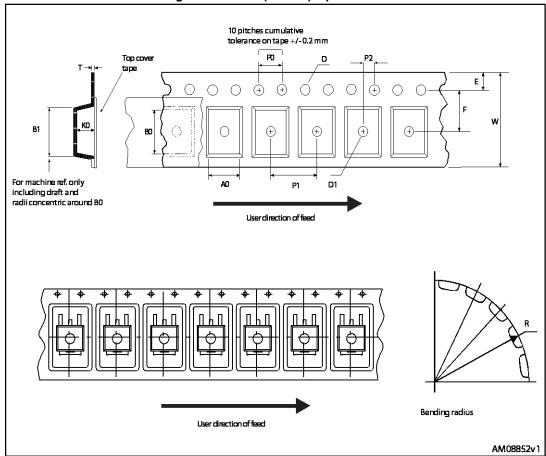

Figure 19: DPAK (TO-252) type A package outline

Table 8: DPAK (TO-252) type A mechanical data

		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	4.60	4.70	4.80
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Package information STD46N6F7



STD46N6F7 Package information

4.2 Packing information

Figure 21: DPAK (TO-252) tape outline

40mm min. access hole at slot location D С Ν Α G measured Tape slot at hub in core for Full radius tape start 2.5mm min.width

Figure 22: DPAK (TO-252) reel outline

Table 9: DPAK (TO-252) tape and reel mechanical data

AM06038v1

Table 9. Dr AK (10-232) tape and reel mechanical data					
	Tape			Reel	
Dim.	mm		Dim.	n	nm
Dilli.	Min.	Max.	Dilli.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

STD46N6F7 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes	
16-Dec-2015	1	First release.	
26-Jan-2016	2	Document status promoted from preliminary to production data.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD46N6F7