N-channel $600 \mathrm{~V}, 0.71 \Omega$ typ., 5.5 A MDmesh ${ }^{\text {TM }}$ M2 Power MOSFET in a TO-220FP package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V $_{\text {DS }}$	$\mathbf{R}_{\text {DS(on) }}$ max.	$\mathbf{I}_{\mathbf{D}}$
STF9HN65M2	600 V	0.82Ω	5.5 A

- Extremely low gate charge
- Excellent output capacitance ($\mathrm{C}_{\text {oss }}$) profile
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh ${ }^{\text {M }}$ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 8
4 Package information 9
4.1 TO-220FP package information 10
5 Revision history 12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
$V_{G S}$	Gate-source voltage	± 25	V
$\mathrm{I}^{(1)}$	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	5.5	A
$\mathrm{I}^{(1)}$	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C}$	3.5	A
$\mathrm{IDM}^{(2)}$	Drain current (pulsed)	22	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	20	W
$\mathrm{dv} / \mathrm{dt}{ }^{(3)}$	Peak diode recovery voltage slope	15	V/ns
$\mathrm{dv} / \mathrm{dt}{ }^{(4)}$	MOSFET dv/dt ruggedness	50	V/ns
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink $\left(\mathrm{t}=1 \mathrm{~s}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	2500	VIso
$\mathrm{T}_{\text {stg }}$	Storage temperature	- 55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. operating junction temperature	150	

Notes

${ }^{(1)}$ Limited only by maximum temperature allowed.
${ }^{(2)}$ Pulse width limited by safe operating area.
${ }^{(3)}$ ISD $\leq 5.5 \mathrm{~A}$, di/dt $\leq 400 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\text {DS peak }}<\mathrm{V}_{\text {(BR) }}$ DSS, $\mathrm{V}_{\mathrm{DD}}=80 \% \mathrm{~V}_{\text {(BR)DSS }}$
${ }^{(4)} \mathrm{V}_{\mathrm{DS}} \leq 520 \mathrm{~V}$.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th} \text {-case }}$	Thermal resistance junction-case max.	6.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} j \text {-amb }}$	Thermal resistance junction-ambient max.	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by $\left.\mathrm{T}_{\mathrm{jmax}}\right)$	1.0	A
E_{AS}	Single pulse avalanche energy (starting $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, V_{D D}=50 \mathrm{~V}$)	105	mJ

2 Electrical characteristics

($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified).
Table 5: Static

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }}$ DSS	Drain-source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	650			V
Idss	Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=650 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=650 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$			100	$\mu \mathrm{A}$
Igss	Gate-body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 25 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	3	4	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static drain-source onresistance	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}$		0.71	0.82	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {iss }}$	Input capacitance	$\mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	325	-	pF
Coss	Output capacitance		-	16	-	pF
$\mathrm{Crss}^{\text {r }}$	Reverse transfer capacitance		-	0.85	-	pF
Coss eq. ${ }^{(1)}$	Equivalent output capacitance	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$ to $520 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	109	-	pF
R_{G}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}$ open drain	-	5.6	-	Ω
Qg_{9}	Total gate charge	$\mathrm{V}_{\mathrm{DD}}=520 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (see Figure 15: "Gate charge test circuit')	-	11.5	-	nC
$\mathrm{Qg}_{\mathrm{gs}}$	Gate-source charge		-	2.5	-	nC
$\mathrm{Qg}_{\mathrm{gd}}$	Gate-drain charge		-	5	-	nC

Notes:

${ }^{(1)} C_{o s s ~ e q . ~}^{\text {is }}$ defined as a constant equivalent capacitance giving the same charging time as $C_{\text {oss }}$ when $V_{D S}$ increases from 0 to 80\% VDSs.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=325 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A} \mathrm{R}_{\mathrm{G}}=4.7 \Omega,$ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ (see Figure 14: "Switching times test circuit for resistive load" and Figure 19: "Switching time waveform")	-	7.5	-	ns
t_{r}	Rise time		-	4.6	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off-delay time		-	24	-	ns
t_{f}	Fall time		-	14.5	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain current		-		5.5	A
$\mathrm{ISDM}^{(1)}$	Source-drain current (pulsed)		-		22	A
$\mathrm{V}_{\text {SD }}{ }^{(2)}$	Forward on voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=5 \mathrm{~A}$	-		1.6	V
t_{rr}	Reverse recovery time	$\mathrm{I}_{\mathrm{sD}}=5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s},$ $V_{D D}=60 \mathrm{~V}$ (see Figure 16: " Test circuit for inductive load switching and diode recovery times")	-	268		ns
Q ${ }_{\text {Ir }}$	Reverse recovery charge		-	1.7		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	12.5		A
$\mathrm{trrr}^{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=5 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$ (see Figure 16: " Test circuit for inductive load switching and diode recovery times")	-	408		ns
Qrr	Reverse recovery charge		-	2.6		$\mu \mathrm{C}$
$I_{\text {RRM }}$	Reverse recovery current		-	13		A

Notes:

${ }^{(1)}$ Pulse width is limited by safe operating area.
${ }^{(2)}$ Pulse test: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area

Figure 3: Thermal impedance

Figure 4: Output characteristics

Figure 5: Transfer characteristics

Figure 6: Normalized gate threshold voltage vs. temperature

Figure 7: Normalized $\mathrm{V}_{\text {(BR)Dss }}$ vs. temperature

Figure 10: Gate charge vs. gate-source voltage

Figure 11: Capacitance variations

Figure 12: Output capacitance stored energy

Figure 13: Source-drain diode forward characteristics

3 Test circuits

Figure 16: Test circuit for inductive load switching and diode recovery times

Figure 17: Unclamped inductive load test circuit

Figure 18: Unclamped inductive waveform

Figure 19: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.
4.1 TO-220FP package information

Figure 20: TO-220FP package outline

Table 9: TO-220FP mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.4		4.6
B	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
H	10		10.4
L2			30.6
L3	28.6		10.6
L4	9.8		3.6
L5	2.9		16.4
L6	15.9		9.3
L7	9		3.2
Dia	3		

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
11-Mar-2015	1	Initial release.
23-Apr-2015	2	Document status promoted to 'Production data'.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

STMicroelectronics:
STF9HN65M2

