

STL7LN80K5

N-channel 800 V, 0.95 Ω typ., 5 A MDmesh™ K5 Power MOSFET in a PowerFLAT™ 5x6 VHV package

Datasheet - production data

Features

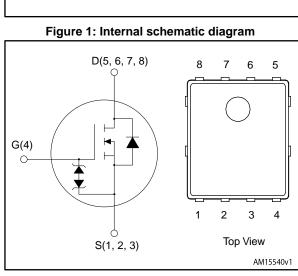
Order code	V _{DS}	R _{DS(on)} max.	ID
STL7LN80K5	800 V	1.15 Ω	5 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description


This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

AM15540v1

Table 1: Device summary					
Order code	Marking	Package	Packing		
STL7LN80K5	7LN80K5	PowerFLAT™ 5x6 VHV	Tape and reel		

DocID028831 Rev 2

This is information on a product in full production.

PowerFLAT[™] 5x6 VHV

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 VHV package information	
	4.2	PowerFLAT™ 5x6 packing information	13
5	Revisio	n history	15

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
Ι _D ⁽¹⁾	Drain current (continuous) at $T_c = 25 \ ^{\circ}C$	5	А
ا _D ⁽¹⁾	Drain current (continuous) at T _c = 100 °C	3.4	А
ا _D ⁽²⁾	Drain current (pulsed)	20	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	42	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	4.5	
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
TJ	Operating junction temperature range	- 55 to 150	C

Notes:

⁽¹⁾Limited by maximum junction temperature.

 $^{\rm (2)}{\rm Pulse}$ width limited by safe operating area

 $^{(3)}I_{SD} \leq 5$ A, di/dt 100 A/µs; V_Ds peak < V(_BR)_DSS, V_DD= 640 V

 $^{(4)}V_{DS} \le 640 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	59	°C/W

Notes:

⁽¹⁾When mounted on 1inch² FR-4 board, 2 oz Cu.

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{jmax})$	1.5	А
E _{AS}	Single pulse avalanche energy (starting Tj = 25 °C, I _D = I _{AR} , V_{DD} = 50 V)	200	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	800			V
	Zara gata valtaga drain	$V_{GS} = 0 V, V_{DS} = 800 V$			1	μA
I _{DSS}	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 800 V,$ $T_{C} = 125 \ ^{\circ}C$			50	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V_{GS} = 10 V, I _D = 2.5 A		0.95	1.15	Ω

Table 6: Dynamic							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
C _{iss}	Input capacitance		-	270	-	pF	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	22	-	pF	
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	0.5	-	рF	
$C_{o(er)}^{(1)}$	Equivalent capacitance energy related		-	17	-	nC	
C _{o(tr)} ⁽²⁾	Equivalent capacitance time related	$V_{DS} = 0$ to 640 V, $V_{GS} = 0$ V	-	48	-	nC	
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	7.5	-	Ω	
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, \text{ I}_{D} = 5 \text{ A},$	-	12	-	nC	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	2.6	-	nC	
Q _{gd}	Gate-drain charge	behavior")	-	8.6	-	nC	

Notes:

 $^{(1)}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}$ Time related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD}=400~V,~I_{D}=2.5~A~R_{G}=4.7~\Omega,$	-	9.3	-	ns	
tr	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching	-	6.7	-	ns	
t _{d(off)}	Turn-off-delay time	times" and Figure 19: "Switching	-	23.6	-	ns	
t _f	Fall time	time waveform")	-	17.4	-	ns	

Table 7: Switching times

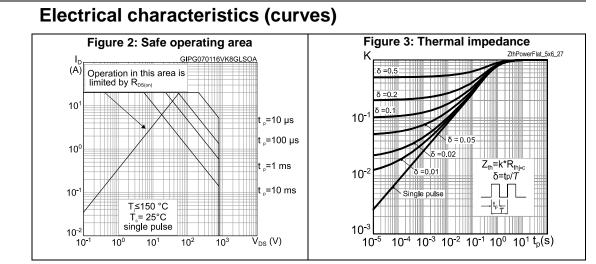
Electrical characteristics

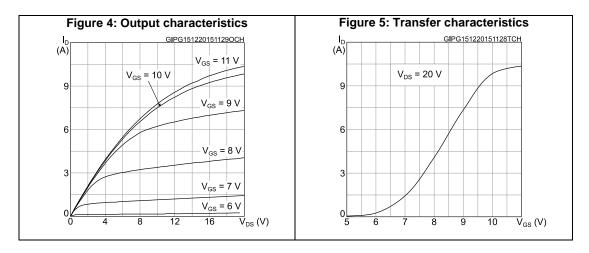
Table 8: Source drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{SD}	Source-drain current		-		5	А	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	А	
V _{SD} ⁽²⁾	Forward on voltage	I_{SD} = 5 A, V_{GS} = 0 V	-		1.6	V	
t _{rr}	Reverse recovery time		-	276		ns	
Q _{rr}	Reverse recovery charge	$I_{SD} = 5 \text{ A}$, di/dt = 100 A/µs, $V_{DD} = 60 \text{ V}$ (see <i>Figure 16: "Test</i> <i>circuit for inductive load switching</i>	-	2.13		μC	
I _{RRM}	Reverse recovery current	circuit for inductive load switching and diode recovery times")		15.4		А	
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/µs,	-	402		ns	
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 \text{ °C}$ (see <i>Figure 16: "Test circuit for</i>	-	2.79		μC	
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	13.9		А	

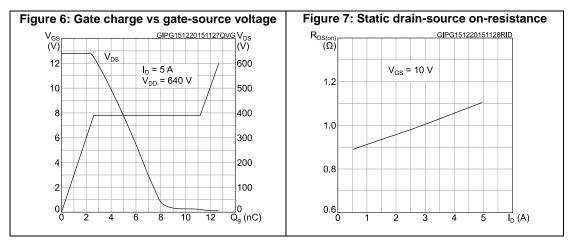
Notes:

 $^{(1)}\mbox{Pulse}$ width is limited by safe operating area

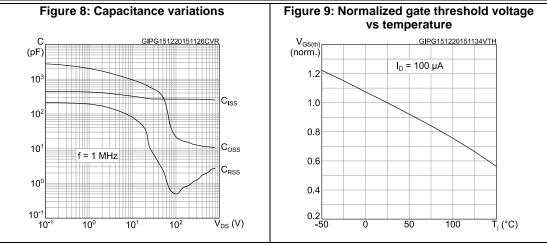
 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

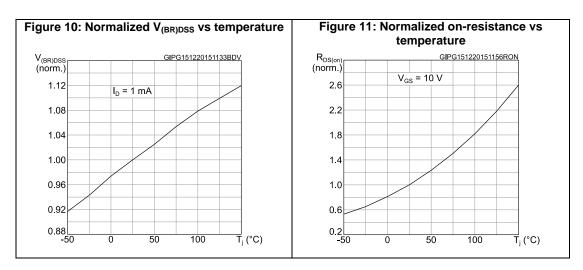

Table 9: Gate-source Zener diode

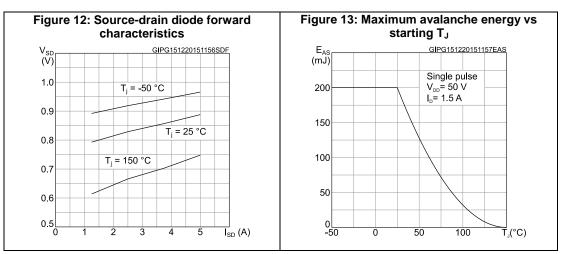

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30	-		V


The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

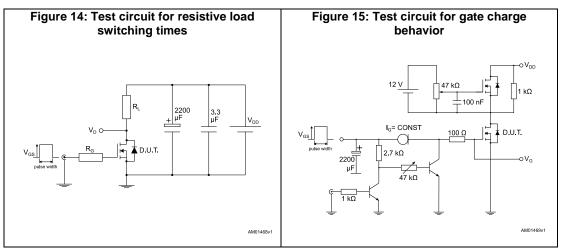
2.2

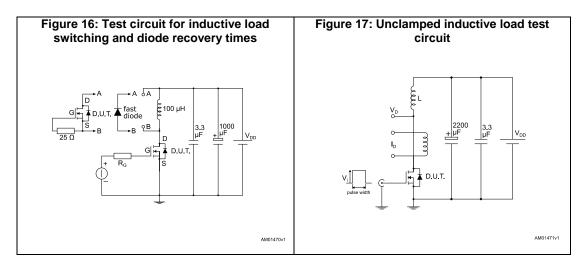


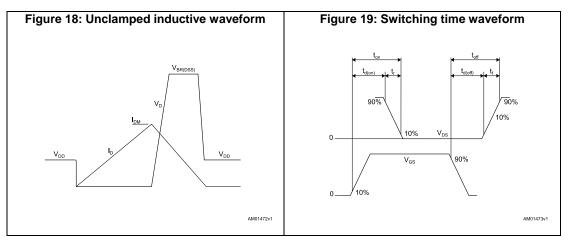



DocID028831 Rev 2

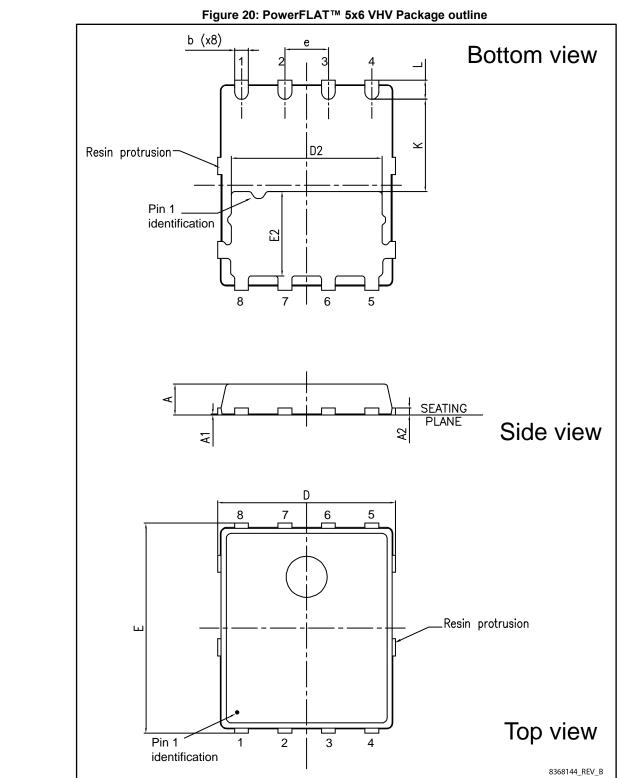
Electrical characteristics







3 Test circuits

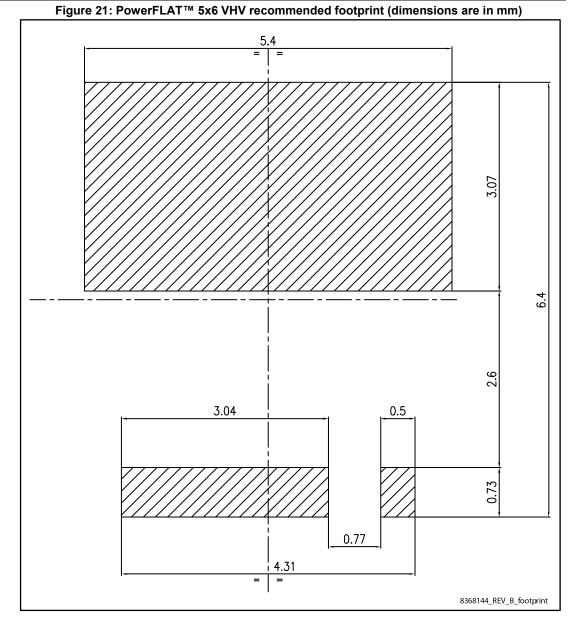


DocID028831 Rev 2

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™] 5x6 VHV package information

DocID028831 Rev 2

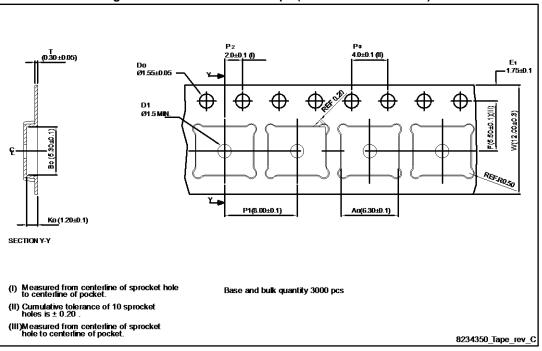
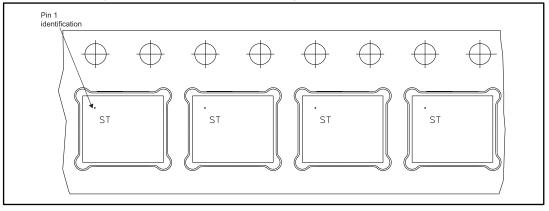

STL7LN80K5

Package information

N5	Package Information				
Tabl	e 10: PowerFLAT™ 5x6 \	VHV package mechanica	al data		
Dim		mm			
Dim.	Min.	Тур.	Max.		
А	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
D	5.00	5.20	5.40		
E	5.95	6.15	6.35		
D2	4.30	4.40	4.50		
E2	2.40	2.50	2.60		
е		1.27			
L	0.50	0.55	0.60		
К	2.60	2.70	2.80		

STL7LN80K5

4.2 PowerFLAT[™] 5x6 packing information

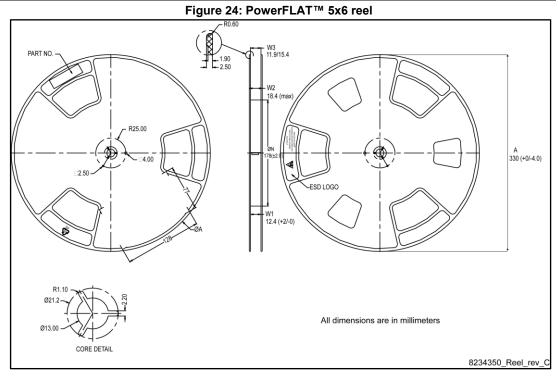

Figure 22: PowerFLAT™ 5x6 tape (dimensions are in mm)

Figure 23: PowerFLAT™ 5x6 package orientation in carrier tape

STL7LN80K5

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
07-Jan-2016	1	First release.
26-Jan-2016	2	Modified: <i>Table 2: "Absolute maximum ratings"</i> Minor text changes

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL7LN80K5