

Power Schottky rectifier

Technical Literature

CUSTOM ATTRIBUTES

	· M.
Alternate Identifier(s)	9474
Key process	Product Development
ISO Definition	Specification
Confidentiality Level	Public
Document Type	Technical Literature
Document Category	Datasheet
Document Family	
Original ID	
Original Repository	
Status	IN APPROVAL
Responsible	Caramanna Marcello
Keywords	Technical Literature, 9474, Product Development, Specification, Datasheet, STPS3150,

DOCUMENT HISTORY

Version	Release Date	Change Qualifier			
Rev 5.1		Properties Changes			
07/01/2014 AUTOMATIC REVALIDATION DATE WORKFLOW STARTED					

DOCUMENT APPROVAL

		DATE
Donohoo Sean Michael	Document Controller	17-Apr-2015
Dononoo Sean Michael	Document Controller	17-Apr-2015

STPS3150

Power Schottky rectifier

Features

- Negligible switching losses
- Low forward voltage drop for higher efficiency and extented battery life
- Low thermal resistance
- ECOPACK[®]2 compliant component

Description

150 V Power Schottky rectifier are suited for switch mode power supplies on up to 24 V rails and high frequency converters.

Packaged in Axial, SMB, and low-profile SMB, this device is intended for use in consumer and computer applications like TV, STB, PC and DVD where low drop forward voltage is required to reduce power dissipation.

Table 1.Device summary

Symbol	Value
I _{F(AV)}	3 A
V _{RRM}	150 V
T _j (max)	175 °C
V _F (max)	0.67 V

1 Characteristics

Table 2. Absolute Ratings (limiting values)

Symbol		Parameter					
V _{RRM}	Repetitive peak reverse volta	age		150	V		
		SMB	$T_L = 130 \ ^{\circ}C \ \delta = 0.5$		A		
I _{F(AV)}	I _{F(AV)} Average forward current	DO-201AD	$T_L = 140 \ ^{\circ}C \ \delta = 0.5$	3			
		SMB flat	$T_L = 150 \ ^{\circ}C \ \delta = 0.5$				
		SMB		80			
I _{FSM}	Surge non repetitive	DO-201AD	t _p = 10 ms sinusoidal	100	А		
		SMB flat		80			
T _{stg}	Storage temperature range		X.	-65 to + 175	°C		
Тj	Operating junction temperat	ure ⁽¹⁾		175	°C		

 $1. \quad \frac{dPtot}{dTj} < \frac{1}{Rth(j-a)} \text{ condition to avoid thermal runaway for a diode on its own heatsink}$

Table 3.Thermal resistance

Symbol		Parameter		Value	Unit
			SMB flat	10	
R _{th(j-l)}	Junction to lead		SMB	20	°C/W
		Lead length = 10 mm	DO-201AD	15	

Table 4.Static electrical characteristics

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
I_ (1)	I _R ⁽¹⁾ Reverse leakage current	T _j = 25 °C	VV		0.4	2.0	μA
'R `´		T _j = 125 °C	$v_{\rm R} = v_{\rm RRM}$		0.6	2.0	mA
	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	$I_F = 3 A$		0.78	0.82	
V (2)		T _j = 125 °C			0.63	0.67	V
¥F Ý		T _j = 25 °C			0.85	0.89	v
	T _j = 125 °C	I _F = 6 А		0.70	0.75		

1. $t_p = 5 \text{ ms}, \delta < 2\%$

2. $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses use the following equation: P = 0.59 x $I_{F(AV)}$ + 0.023 ${I_F}^2_{(RMS)}$

175

2.4

2.2

2.0

1.8

1.6 1.4

1.2

1.0 0.8

0.6 0.4

0.2

0.0

0.0

Figure 3. Average forward current versus ambient temperature ($\delta = 0.5$) (SMB flat)

Figure 4. Non repetitive surge peak forward current versus overload duration (maximum values)

Figure 6.

Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values)

Non repetitive surge peak forward current versus overload duration (maximum values)

Figure 10. Relative variation of thermal impedance junction to ambient versus pulse duration

Figure 13. Junction capacitance versus reverse voltage applied (typical values)

Figure 15. Thermal resistance junction to ambient versus copper surface under each lead

0.6 Figure 16. Thermal resistance junction to ambient versus copper surface under each lead

0.8

V_{FM}(V)

1.0

1.2

1.4

1.8

1.6

Figure 14. Forward voltage drop versus

Ti=125°C

forward current

Ti=125°C

IFM(A)

0.2

0.0

0.4

Thermal resistance junction to ambient versus copper surface under each lead Figure 17. (epoxy printed board copper thickness = 35 μm)

57

2 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. SMB dimensions

			Dimensions				
E1		Ref.	Millimeters		Inches		
			Min.	Max.	Min.	Max.	
D		A1	1.90	2.45	0.075	0.096	
		A2	0.05	0.20	0.002	0.008	
		b	1.95	2.20	0.077	0.087	
E Contraction of the second se		С	0.15	0.40	0.006	0.016	
	A1	Е	5.10	5.60	0.201	0.220	
	A2	E1	4.05	4.60	0.159	0.181	
k	le b	D	3.30	3.95	0.130	0.156	
		L	0.75	1.50	0.030	0.059	

Figure 18. SMB footprint (dimensions in mm)

Table 6. SMB Flat dimensions

				Dim	ensions	5	
	Ref.	Mi	llimete	ers		Inches	
		Min.	Тур.	Max.	Min.	Тур.	Max.
C →	А	0.90		1.10	0.035		0.043
↓ ↓	b ⁽¹⁾	1.95		2.20	0.077		0.087
	c ⁽¹⁾	0.15		0.40	0.006		0.016
E E1	D	3.30		3.95	0.130		0.156
	Е	5.10		5.60	0.200		0.220
	E1	4.05		4.60	0.189		0.181
b	L	0.75	X	1.50	0.029		0.059
	L1	Ö	0.40			0.016	
	L2	5	0.60			0.024	

1. Applies to plated leads

Figure 19. SMB Flat footprint (dimensions in mm)

Table 7. DO-201AD dimensions

			Dimensions			
B A ↓	B	REF.	Millim	neters	Inc	hes
Note 1 → E E →			Min.	Max.	Min.	Max.
		A		9.50		0.374
ØC ·	>	В	25.40		1.000	
		С		5.30		0.209
(D ⁽¹⁾		1.30		0.051
		E		1.25		0.049
		Note 2 ⁽²⁾	15		0.59	

1. The lead diameter D is not controlled over zone E

2. The minimum length, which must stay straight between the right angles after bending, is 15 mm (0.59")

3 Ordering information

Table 8.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS3150U	G315	SMB	0.107 g	2500	Tape and reel
STPS3150UF	FG315	SMB flat	0.50 g	5000	Tape and reel
STPS3150	STPS3150	DO-201AD	1.12 g	600	Ammopack
STPS3150RL	STPS3150	DO-201AD	1.12 g	1900	Tape and reel

4 Revision history

Table 9.Document revision history

O'S'

Date	Revision	Changes
May-2003	2A	Last update.
31-May-2006	3	Reformatted to current standard. Added ECOPACK statement. Updated SMB footprint in Figure 12. Changed nF to pF in Figure 8.
08-Feb-2007	4	Added SMB flat and SMB flat e package.
20-Jul-2011	5	Updated Table 2.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

10/10

Doc ID 9474 Rev 5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: <u>STPS3150U</u> STPS3150 STPS3150RL STPS3150UF