

STT5N2VH5

Datasheet — production data

N-channel 20 V, 0.025 Ω typ., 5 A STripFET[™] V Power MOSFET in a SOT23-6L package

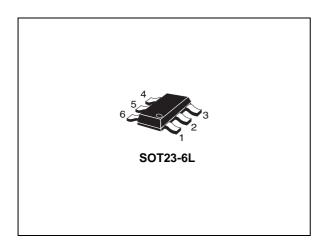
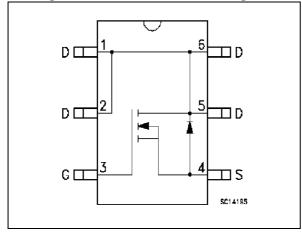



Figure 1. Internal schematic diagram

Features

Order code	v_{DS}	R _{DS(on)} max	I _D	P _{TOT}
STT5N2VH5	20 V	0.04 Ω (V _{GS} =2.5 V)	5 A	1.6 W

- Very low profile package
- Conduction losses reduced
- Switching losses reduced
- 2.5 V gate drive
- Very low threshold device

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using STMicroelectronics' STripFET™V technology. The device has been optimized to achieve very low on-state resistance, contributing to a FOM that is among the best in its class.

Table 1. Device summary

Order code	Marking	Packages	Packaging
STT5N2VH5	STD1	SOT23-6L	Tape and reel

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	2

1 Electrical ratings

Parameter	Value	Unit
Drain-source voltage	20	V
Gate-source voltage	± 8	V
Drain current (continuous) at T _{pcb} = 25 °C	5	А
Drain current (continuous) at T _{pcb} = 100 °C	3.1	А
Drain current (pulsed)	20	А
Total dissipation at T _{pcb} = 25 °C	1.6	W
Storage temperature	- 55 to 150	°C
Max. operating junction temperature	- 55 10 150	°C
	Drain-source voltage Gate-source voltage Drain current (continuous) at $T_{pcb} = 25 \text{ °C}$ Drain current (continuous) at $T_{pcb} = 100 \text{ °C}$ Drain current (pulsed) Total dissipation at $T_{pcb} = 25 \text{ °C}$ Storage temperature	Drain-source voltage20Gate-source voltage ± 8 Drain current (continuous) at $T_{pcb} = 25 \text{ °C}$ 5Drain current (continuous) at $T_{pcb} = 100 \text{ °C}$ 3.1Drain current (pulsed)20Total dissipation at $T_{pcb} = 25 \text{ °C}$ 1.6Storage temperature- 55 to 150

Table 2. Absolute maximum ratings

1. This value is rated according to $\mathrm{R}_{\mathrm{thj-pcb}}$

2. Pulse width is limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	78	°C/W

1. When mounted on 1 inch² FR-4, 2 Oz Cu, t< 10 sec.

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	20			V
	Zero gate voltage	V _{DS} = 20 V			1	μA
l _{DSS} d	drain current ($V_{GS} = 0$)	V _{DS} = 20 V, T _C =125 °C			10	μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 8 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu$ A	0.7			V
Р	Static drain-source	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 2 \text{ A}$		0.025	0.03	Ω
R _{DS(on)}	on-resistance	$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 2 \text{ A}$		0.031	0.04	Ω

Table 4. On /off states

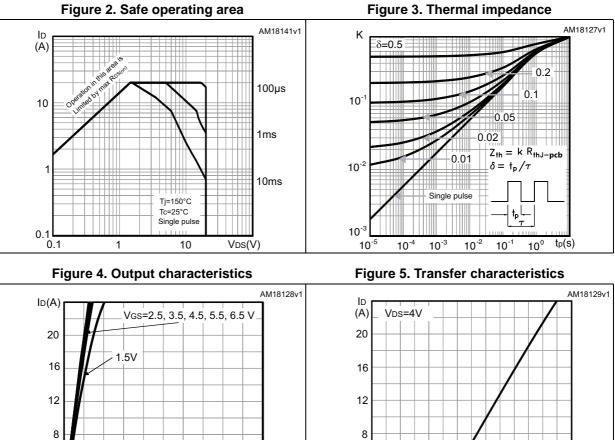
Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	367	-	pF
C _{oss}	Output capacitance	V _{DS} = 16 V, f = 1 MHz,	-	92	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	16	-	pF
Qg	Total gate charge	V _{DD} = 16 V, I _D = 2 A,	-	4.6	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 4.5 V	-	0.9	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	1	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Voltage delay time		-	4.8	-	ns
t _{r (V)}	Voltage rise time	$V_{DD} = 16 V, I_D = 2 A,$ $R_G = 4.7 \Omega, V_{GS} = 4.5 V$ (see <i>Figure 15</i> and <i>Figure 18</i>)	-	14.4	-	ns
t _{d (off)}	Current fall time		-	17	-	ns
t _f	Crossing time		-	4	-	ns

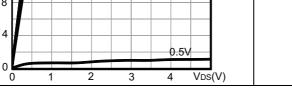
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	Α
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 2 \text{ A}, V_{GS} = 0$	-		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 2 A, di/dt = 100 A/μs	-	10		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 16 V, T _j = 150 °C	-	24		nC
I _{RRM}	Reverse recovery current	(see Figure 18)	-	4.8		Α


Table 7. Source drain diode

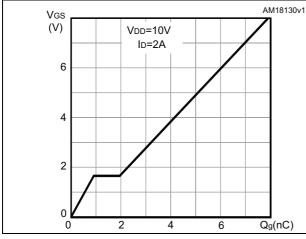
1. Pulse width limited by safe operating area.

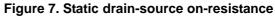
2. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

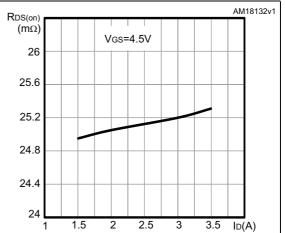

4

0


0


0.2

0.4



0.6

0.8

1

DocID026116 Rev 1

Vgs(V)

1.2

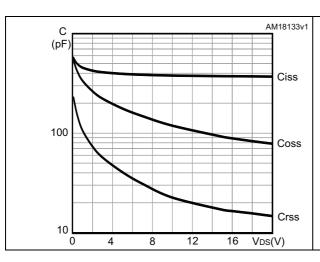


Figure 8. Capacitance variations

Figure 10. Normalized on-resistance vs temperature

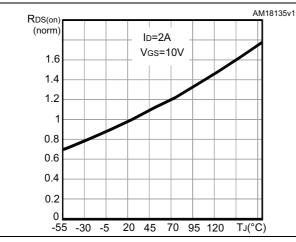
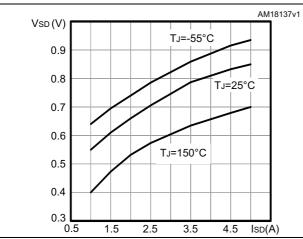



Figure 12. Source-drain diode forward characteristics

57

Figure 9. Normalized gate threshold voltage vs temperature

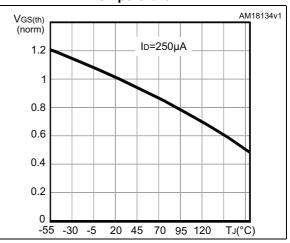
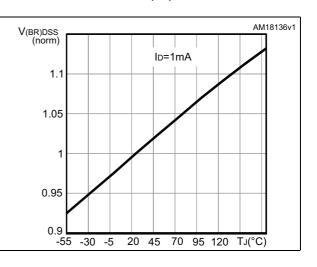



Figure 11. Normalized $\rm V_{(BR)DSS}$ vs temperature

3 **Test circuits**

Figure 13. Switching times test circuit for resistive load

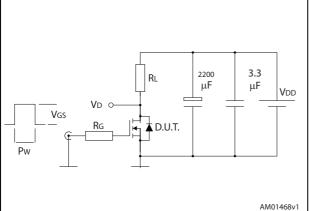


Figure 15. Test circuit for inductive load switching and diode recovery times

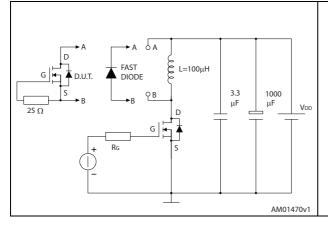


Figure 17. Unclamped inductive waveform

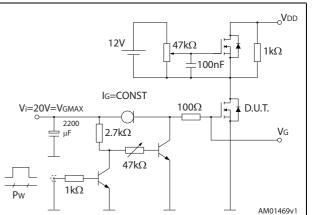
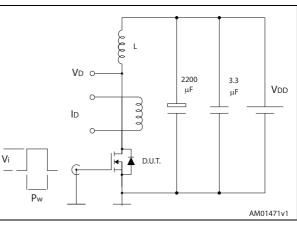



Figure 14. Gate charge test circuit

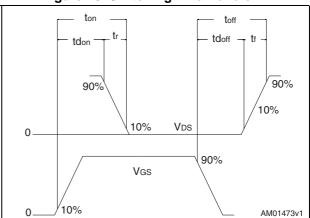
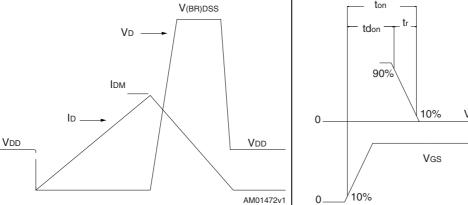
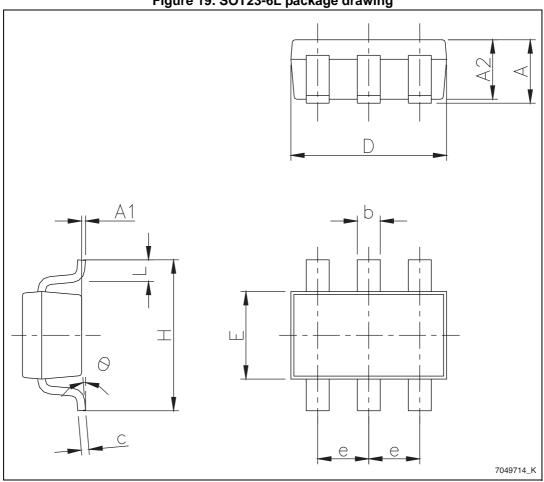
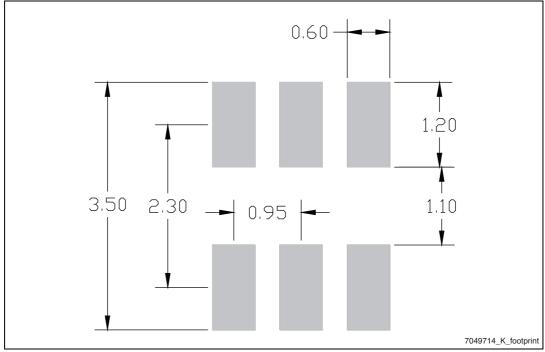



Figure 18. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.




Figure 19. SOT23-6L package drawing

		mm	~
Dim.	Min.	Тур.	Max.
A			1.25
A1	0.00		0.15
A2	1.00	1.10	1.20
b	0.36		0.50
С	0.14		0.20
D	2.826	2.926	3.026
E	1.526	1.626	1.726
е	0.90	0.95	1.00
Н	2.60	2.80	3.00
L	0.35	0.45	0.60
θ	0 °C		8 °C

Table 8. SOT23-6L package mechanical data

Figure 20. SOT23-6L recommended footprint^(a)

a. All dimensions are in millimeters

5 Revision history

Table 9.	Document	revision	history
----------	----------	----------	---------

Date	Revision	Changes
20-Mar-2014	1	First release. Part number previously included in datasheet DocID023799

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

ST logo is a registered trademark of ST microelectronics. All other names are the property of their respective owner

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID026116 Rev 1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STT5N2VH5