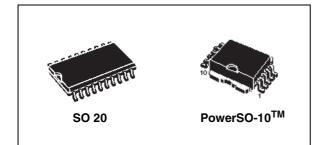


VNQ860-E, VNQ860SP-E

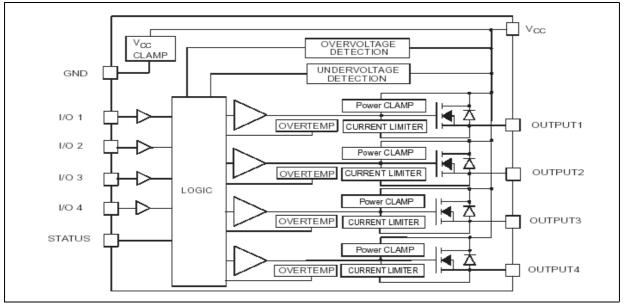
Quad channel high-side driver


Datasheet - production data

- Thermal shutdown
- Very low standby current
- Protection against loss of ground

Description

The VNQ860-E and the VNQ860SP-E are monolithic devices realized in STMicroelectronics VIPower M0-3 technology, intended to drive any kind of load with one side connected to ground. Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device automatically turns OFF in case of ground pin disconnection. This device is especially suitable for IEC 61131 compliant industrial applications.



Features

Туре	R _{DS(on)} ⁽¹⁾	I _{out}	V _{CC}
VNQ860-E VNQ860SP-E	270 mΩ	0.25 A	36 V

1. Per each channel

- CMOS compatible I/Os
- Undervoltage and overvoltage shutdown

Figure 1. Block diagram

March 2013

DocID10964 Rev 7

This is information on a product in full production.

Contents

1	Maximum ratings 3
2	Pin connection
3	Electrical characteristics5
4	Truth table and switching characteristics
5	Typical application schematic
6	Waveforms
7	PowerSO-10 [™] thermal data 10
8	Reverse polarity protection 11
9	Package mechanical data 12
10	Ordering information
11	Revision history

1 Maximum ratings

Symbol	Parameter	,	Unit		
Symbol	Falameter	SO20	PowerSO-10	OIIII	
V _{CC}	DC supply voltage		41		
-V _{CC}	Reverse DC supply voltage		-0.3	V	
-I _{GND}	DC reverse ground pin		-200	mA	
I _{OUT}	DC output current	Internally limited		А	
-I _{OUT}	Reverse DC output current	-2		А	
I _{IN}	DC input current	± 10		mA	
V _{IN}	Input voltage range	-3/+V _{CC}		V	
V _{STAT}	DC status voltage	-	⊦ V _{CC}	V	
V _{ESD}	Electrostatic discharge (R = 1.5 k Ω C = 100 pF)		2000	V	
P _{tot}	Power dissipation at $T_c \le 25 \text{ °C}$	16 90		W	
TJ	Junction operating temperature	Internally limited		°C	
T _c	Case operating temperature	-40 to 150		°C	
T _{stg}	Storage temperature	-5	5 to 150	°C	

Table 1.	Absolute	maximum	ratings
	Absolute	maximum	raungs

Table 2. Thermal data

Symbol	Parameter	V	Unit			
Symbol	Faranteler					
R _{th(JP)}	Thermal resistance junction-pins	Max.	8	-	°C/W	
R _{th(JA)}	Thermal resistance junction-ambient	Max.	58	52 ⁽¹⁾ 37 ⁽²⁾	°C/W	
R _{th(JC)}	Thermal resistance junction-case	Max.	-	1.4	°C/W	

1. When mounted on FR4 printed circuit board with 0.5 cm^2 of copper area (at least 35 μ thick) connected to all V_{CC} pins.

2. When mounted on FR4 printed circuit board with 6 cm^2 of copper area (at least 35 μ thick) connected to all V_{CC} pins.

2 Pin connection

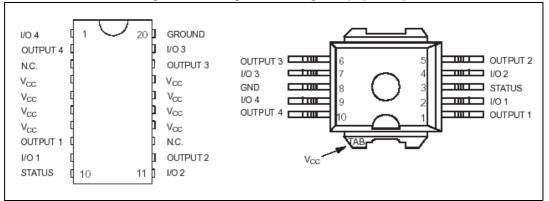
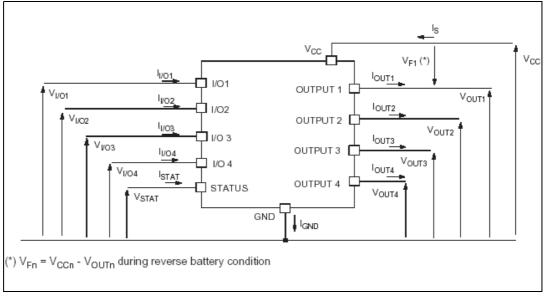



Figure 2. Configuration diagram (top view)

Table 3. Pin connection

Connection / pin	Status	N.C.	Output	Input
Floating	Х	Х	Х	Х
To ground		Х		Through 10 k Ω resistor

Figure 3. Current and voltage conventions

3 Electrical characteristics

8 V < V_{CC} < 36 V; -40 $^\circ C$ < T_J < 150 $^\circ C;$ unless otherwise specified.

Table 4. Power Section							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V_{CC}	Operating supply voltage		5.5		36	V	
V _{USD}	Undervoltage shutdown		3	4	5.5	V	
V _{OV}	Overvoltage shutdown		36	42	48	V	
R _{ON}	On state resistance (per channel)	I _{OUT} = 0.25 A; T _J = 25 °C; I _{OUT} = 0.25 A;			270 540	mΩ	
۱ _S	Supply current	OFF state; V _{CC} = 24 V;T _C = 25 °C ON state (all channels ON)		70 5	120 10	μA mA	
I _{LGND}	Output current	$V_{CC} - V_{STAT} = V_{IN} = V_{GND} = 24$ V; $V_{OUT} = 0$ V			1	mA	
I _{L(OFF)}	OFF state output current	V _{IN} = V _{OUT} = 0 V	0		10	μA	
I _{OUTleak}	OFF state output leakage current	$V_{IN} = V_{GND} = 0 V; V_{CC} = V_{OUT} = 24 V; T_A = 25 °C$			240	μA	
I _{OUTleak}	OFF state output leakage current	V _{IN} = V _{GND} = 0 V; V _{CC} = 24 V; V _{OUT} = 10 V; T _A = 25 °C			100	μA	

Table 5. Switching ($V_{CC} = 24 V$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _(ON)	Turn-on delay time of output current	R_L = 96 Ω from V _{IN} rising edge to V _{OUT} = 2.4 V	-	10	-	μs
t _(OFF)	Turn-off delay time of output current	R_L = 96 Ω from V _{IN} rising edge to V _{OUT} = 21.6 V	-	40	-	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	R_L = 96 Ω from V _{OUT} = 2.4 V to 19.2 V	-	0.75	-	V/ µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$\rm R_L$ = 96 Ω from V_{OUT} = 21.6 V to 2.4 V	-	0.25	-	V/ µs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
l _{lim}	Current limitation		0.35	0.7	1.1	А	
T _(hyst)	Thermal hysteresis		7	15		°C	
T _{TSD}	Thermal shutdown temperature		150	175	200	°C	
Τ _R	Reset temperature		135			°C	
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 0.25 A, V _{CC} = 24 V	V _{CC} - 59	V _{CC} - 52	V _{CC} - 47	V	

Table 6. Protections (per channel)

Table 7. Logic input (per channel)

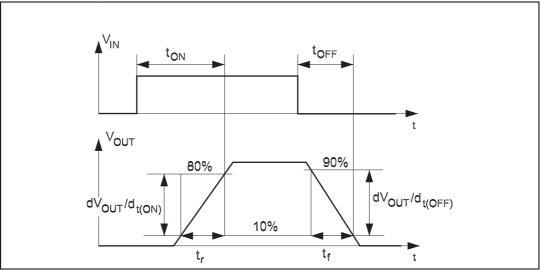
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Low level input voltage			-	1.25	V
I _{IL}	Low level input current	V _{IN} = 1.25 V	1	-		μA
V _{IH}	High level input voltage		3.25	-		V
IIH	High level input current	V _{IN} = 3.25 V		-	10	μA
V _{I(HYST)}	Input hysteresis voltage		0.5	-		V
I _{IN}	Input current	V _{IN} = V _{CC} = 36 V		-	200	μA
VOL	I/O output voltage	I _{IN} = 5 mA (fault condition)		-	1	۷

Table 8. Status pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VSTAT	Status low output voltage	I _{STAT} = 5 mA (fault condition)	-	-	1	V
ILSTAT	Status leakage current	Normal operation; $V_{STAT} = V_{CC} = 36 V$	-	-	10	μA
C _{STAT}	Status pin input capacitance	Normal operation; V _{STAT} = 5 V	-	-	100	pF

Table 9. V_{CC} - output diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VF	Forward on voltage	-I _{OUT} = 0.3 A; T _J = 150 °C	-	-	1	V



4 Truth table and switching characteristics

Conditions	MCOUTn	l/On	OUTPUTn	STATUS
Normal operation	L H	L H	L H	н н
Current limitation	L H	L H	L X	H H
Overtemperature	L H	L Driven low	L	L
Undervoltage	L H	L H	L	X X
Overvoltage	L H	L H	L	H H

Table 10. Truth table

Figure 4. Switching characteristics

5 Typical application schematic

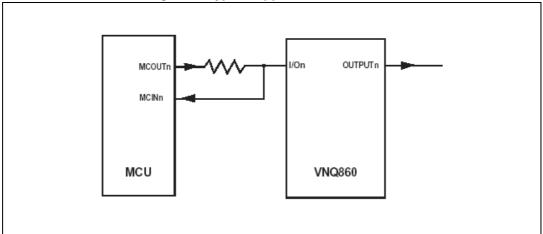
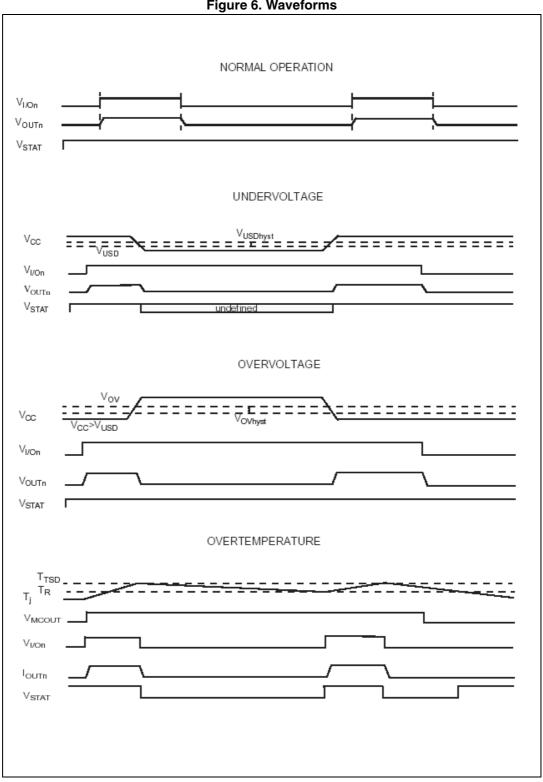
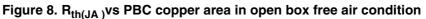
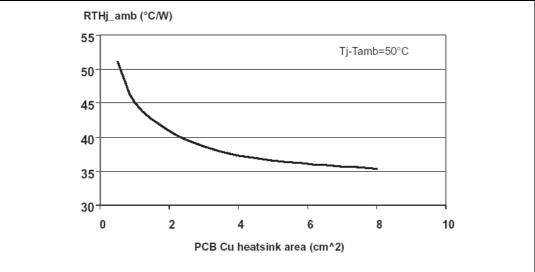



Figure 5. Typical application schematic

Waveforms 6





7 PowerSO-10[™] thermal data

 $\label{eq:prod} \begin{array}{|c|c|} \hline P & 0 & 0 \\ \hline P & 0 \\ \hline P & 0 & 0 \\ \hline P & 0$

Figure 7. PowerSO-10[™] PC board

8 Reverse polarity protection

A solution to protect the IC against a reverse polarity condition is proposed in Figure 9.

This schematic is valid with any type of load connected to the outputs of the IC.

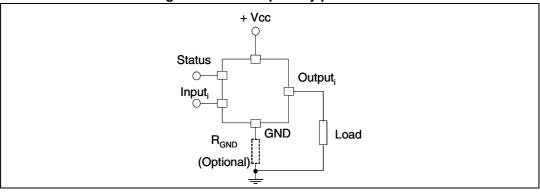
The R_{GND} resistor value can be selected according to the following conditions:

Equation 1

 $R_{GND} \leq 600 \text{ mV}$ / (I_S in ON state max.).

Equation 2

 $R_{GND} \ge (-V_{CC}) / (-I_{GND})$


where -I_{GND} is the DC reverse ground pin current and can be found in *Table 1: Absolute maximum ratings*.

The power dissipation associated to R_{GND} during the reverse polarity condition is:

 $PD = (-V_{CC})^2 / R_{GND}$

This resistor can be shared by different ICs. In such case, I_S value, indicated in *Equation 1*, is the sum of the maximum ON-state currents of the different devices.

Please note that, if the microprocessor ground and the device ground are separated then the voltage drop across the R_{GND} (given by I_S in ON state max. * R_{GND}) produces a difference between the generated input level and the IC input signal level. This voltage drop varies depending on how many devices are ON in the case of several high-side switches sharing the same R_{GND} .

Figure 9. Reverse polarity protection

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Dim.	mm			inch		
	Min	Тур	Max	Min	Тур	Max
А	3.35		3.65	0.132		0.144
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
С	0.35		0.55	0.013		0.022
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
Е	9.30		9.50	0.366		0.374
E1	7.20		7.40	0.283		0.291
E2	7.20		7.60	0.283		0.300
E3	6.10		6.35	0.240		0.250
E4	5.90		6.10	0.232		0.240
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
Н	13.80		14.40	0.543		0.567
h		0.50			0.002	
L	1.20		1.80	0.047		0.071
q		1.70			0.067	
а	0°		8°			

Table 11.	PowerSO-10™	mechanical data
	1 0110100 10	moonanioar aata

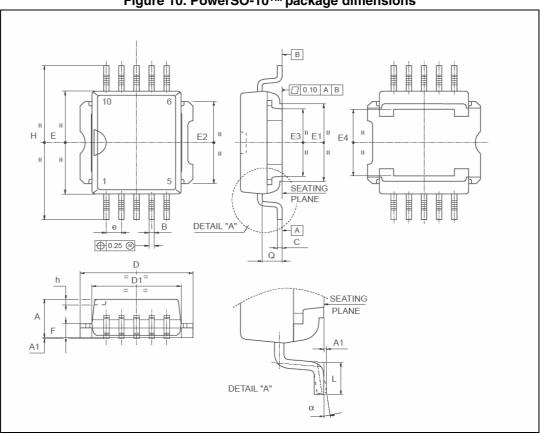
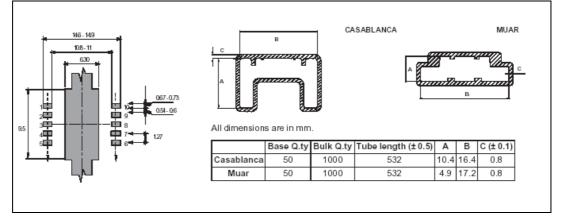



Figure 10. PowerSO-10[™] package dimensions

Figure 11. PowerSO-10[™] suggested pad and tube shipment (no suffix)

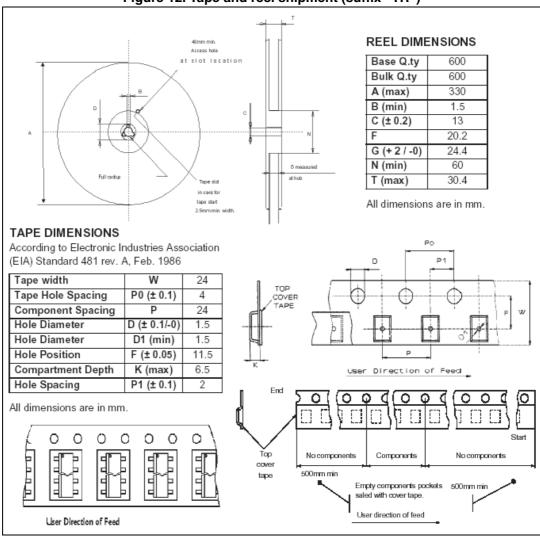


Figure 12. Tape and reel shipment (suffix "TR")

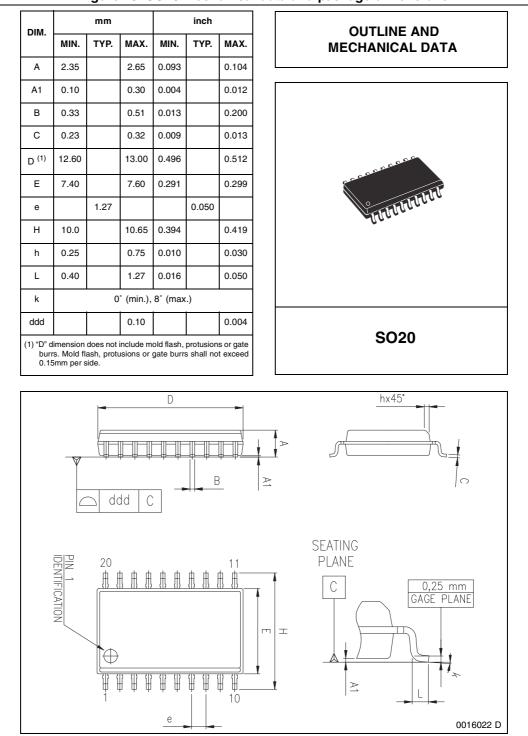
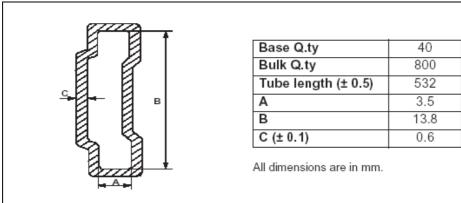
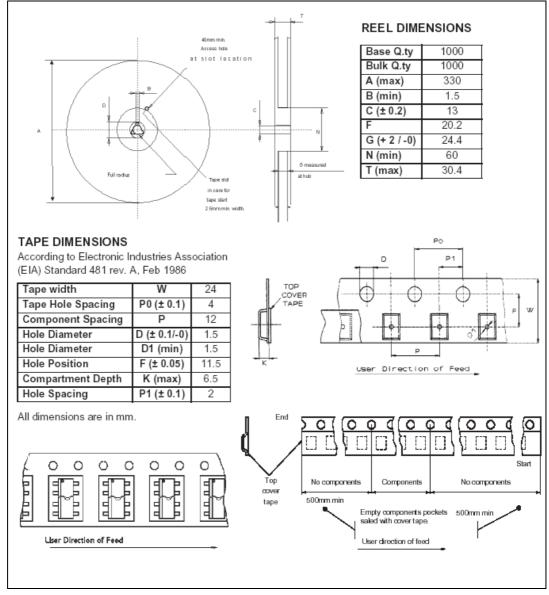




Figure 13. SO20 mechanical data and package dimensions

Figure 14. SO20 tube shipment (no suffix)

Figure 15. Tape and reel shipment (suffix "13TR")

DocID10964 Rev 7

10 Ordering information

Order codes	Package	Packaging	
VNQ860-E	SO20		
VNQ860SP-E	PowerSO-10™	- Tube	
VNQ860TR-E	SO20	Tapa and real	
VNQ860SPTR-E	PowerSO-10™	- Tape and reel	

Table 12. Ordering information

11 Revision history

Date	Revision	Changes	
14-Jul-2005	1	Updates, new template	
7-Nov-2005	2	Few updates	
07-Jul-2008	3	Added Section 8 on page 11	
28-Apr-2009	4	Updated Figure 13 on page 15	
05-May-2010	5	Updated coverpage	
31-Aug-2010	6	Updated Table 10 on page 7	
15-Mar-2013	7	Updated <i>Table 1</i> and <i>Table 12</i> . Minor text changes.	

Table 13. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID10964 Rev 7

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

VNQ860-E VNQ860SP-E VNQ860SPTR-E VNQ860TR-E