

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	60				
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.028			
Q _g (Max.) (nC)	67				
Q _{gs} (nC)	18				
Q _{gd} (nC)	25				
Configuration	Sing	le			

N-Channel MOSFET

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Advanced Process Technology
- Surface Mount (IRFZ44S, SiHFZ44S)
- Low-Profile Through-Hole (IRFZ44L, SiHFZ44L)
- 175 °C Operating Temperature
- Fast Switching
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay utilize advanced processing techniques to achieve extermely low on resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that power MOSFETs are well known for, provides the designer with an extermely efficient reliabel deviece for use in a wide variety of applications.

The D²PAK is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and lowest possible on-resistance in any existing surface mount package. The D²PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application.

The through-hole version (IRFZ44L, SiHFZ44L) is available for low profile applications.

ORDERING INFORMATION							
Package	D ² PAK (TO-263)	D ² PAK (TO-263)	D ² PAK (TO-263)	I ² PAK (TO-262)			
Lead (Pb)-free and Halogen-free	SiHFZ44S-GE3	SiHFZ44STRR-GE3 ^a	SiHFZ44STRL-GE3 ^a	-			
Lead (Pb)-free	IRFZ44SPbF	IRFZ44STRRPbF ^a	IRFZ44STRLPbF ^a	IRFZ44LPbF			
	SiHFZ44S-E3	SiHFZ44STR-E3 ^a	SiHFZ44STL-E3 ^a	SiHFZ44L-E3			
Note							

a. See device orientation.

ABSOLUTE MAXIMUM RATINGS (T_C :	= 25 °C, unl	ess otherwis	e noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage ^f	V _{DS}	60	v			
Gate-Source Voltage ^f	V _{GS}	± 20	v			
Continuous Drain Current ^e	V _{GS} at 10 V	T _C = 25 °C T _C = 100 °C	L	50		
Continuous Drain Current	V_{GS} at 10 V $T_C = 100 \text{ °C}$		I _D	36	A	
Pulsed Drain Current ^{a, e}			I _{DM}	200	1	
Linear Derating Factor				1.0	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	100	mJ	
Maximum Power Dissipation	T _A =	25 °C	р	3.7	- w	
		25 °C	P _D	150		
Peak Diode Recovery dV/dt ^{c, f}	-		dV/dt	4.5	V/ns	
Operating Junction and Storage Temperature Range	е		T _J , T _{stg}	- 55 to + 175	°C	
Soldering Recommendations (Peak Temperature ^d)	for	10 s		300		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. $V_{DD} = 25 \text{ V}$; starting $T_J = 25 \text{ °C}$, L = 44 µH, $R_g = 25 \Omega$, $I_{AS} = 51 \text{ Å}$ (see fig. 12). c. $I_{SD} \le 51 \text{ Å}$, $dI/dt \le 250 \text{ Å/µs}$, $V_{DD} \le V_{DS}$, $T_J \le 175 \text{ °C}$.

d. 1.6 mm from case.

e. Calculated continuous current based on maximum allowable junction temperature.

f. Uses IRFZ44, SiHFZ44 data and test conditions.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91293 S11-1063-Rev. C, 30-May-11 www.vishay.com

RoHS COMPLIANT HALOGEN FREE

Vishay Siliconix

THERMAL RESISTANCE RATINGS							
PARAMETER	SYMBOL	TYP.	MAX.	UNIT			
Maximum Junction-to-Ambient (PCB Mounted, steady-state) ^a	R _{thJA}	-	40	°C/W			
Maximum Junction-to-Case	R _{thJC}	-	1.0				

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

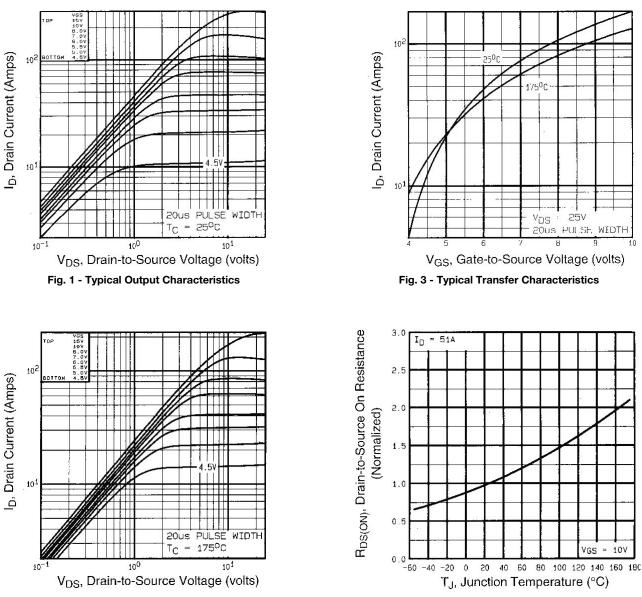
PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	= 0, I _D = 250 μA	60	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_J$	Reference to 25 °C, I _D = 1 mA		-	0.06	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$		-	4.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20 V$	-	-	± 100	nA
Zero Gate Voltage Drain Current		V _{DS} :	= 60 V, V _{GS} = 0 V	-	-	25	μA
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 48 V,	, V _{GS} = 0 V, T _J = 150 °C	-	-	250	μΑ
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 31 A ^b	-	-	0.028	Ω
Forward Transconductance	g _{fs}	V _{DS} =	= 25 V, I _D = 31 A ^b	15	-	-	S
Dynamic							
Input Capacitance	Ciss		V _{GS} = 0 V,		1900	-	pF
Output Capacitance	C _{oss}	$V_{DS} = 25 \text{ V},$ $f = 1.0 \text{ MHz}, \text{ see fig. 5 }^{\text{d}}$		-	920	-	
Reverse Transfer Capacitance	C _{rss}			-	170	-	
Total Gate Charge	Qg			-	-	67	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$V_{GS} = 10 V$ $I_D = 51 A, V_{DS} = 48 V,$ see fig. 6 and 13^b		-	18	nC
Gate-Drain Charge	Q _{gd}		U U	-	-	25]
Turn-On Delay Time	t _{d(on)}				14	-	
Rise Time	t _r		= 30 V, I _D = 51 A,	-	110	-	- ns
Turn-Off Delay Time	t _{d(off)}	- R _g = 9	0.1 Ω, $R_D = 0,55 \Omega$, see fig. 10 ^b	-	45	-	
Fall Time	t _f			-	92	-	
Internal Source Inductance	L _S	Between lead	, and center of die contact	-	7.5	-	nH
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol	-	-	50 ^d	
Pulsed Diode Forward Current ^a	I _{SM}	integral revers p - n junction		-	-	200	A
Body Diode Voltage	V _{SD}	T _J = 25 °C	C, I _S = 51 A, V _{GS} = 0 V ^b	-	-	2.5	V
Body Diode Reverse Recovery Time	t _{rr}	T 05 °C 1		-	120	180	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm J} = 25 {}^{-}{\rm C}, I_{\rm F} =$	= 51 A, dl/dt = 100 A/µs ^{b, d}	-	530	800	nC
Forward Turn-On Time	t _{on}	Intrinsic tu	rn-on time is negligible (turn	on is dor	ninated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

c. Uses IRFZ44, SiHFZ44 data and test conditions.


d. Calculated continuous current based on maximum allowable junction temperature.

www.vishay.com 2 Document Number: 91293 S11-1063-Rev. C, 30-May-11

Vishay Siliconix

10

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 2 - Typical Output Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Document Number: 91293 S11-1063-Rev. C, 30-May-11

Vishay Siliconix

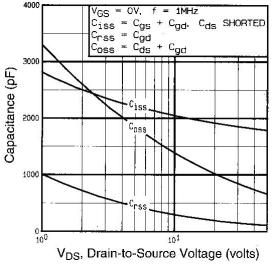


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

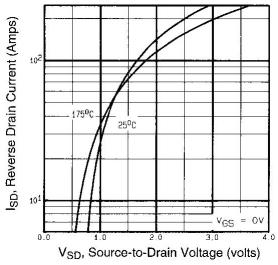


Fig. 7 - Typical Source-Drain Diode Forward Voltage

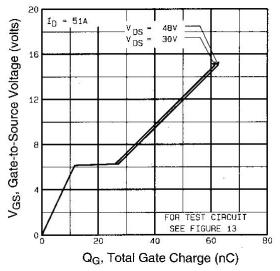
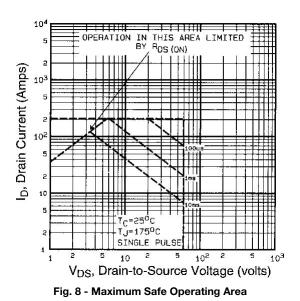



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Document Number: 91293 S11-1063-Rev. C, 30-May-11

Vishay Siliconix

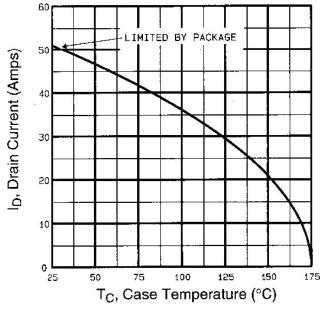


Fig. 9 - Maximum Drain Current vs. Case Temperature

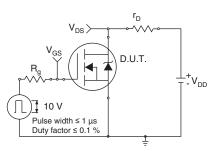


Fig. 10a - Switching Time Test Circuit

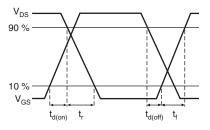


Fig. 10b - Switching Time Waveforms

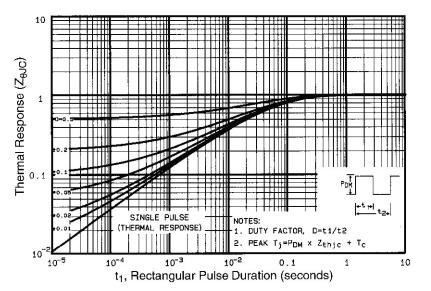


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

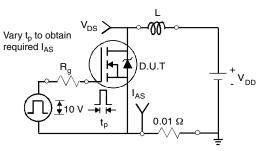


Fig. 12a - Unclamped Inductive Test Circuit

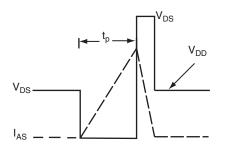


Fig. 12b - Unclamped Inductive Waveforms

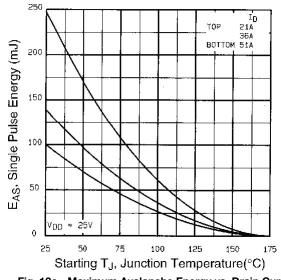


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

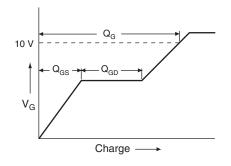
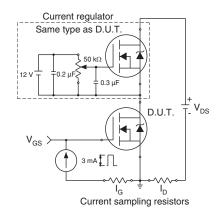



Fig. 13a - Basic Gate Charge Waveform

Document Number: 91293 S11-1063-Rev. C, 30-May-11

Vishay Siliconix

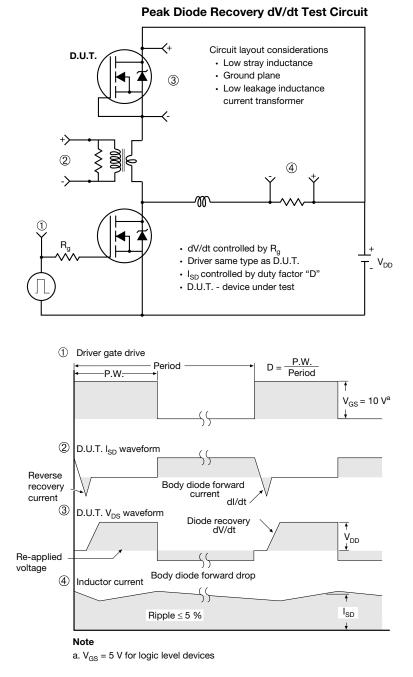


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91293.

Document Number: 91293 S11-1063-Rev. C, 30-May-11

H

A1

B

Gauge plane

L3

Detail "A" Rotated 90° CW scale 8:1

0° to 8° **Vishay Siliconix**

Seating plane

TO-263AB (HIGH VOLTAGE)

/3 ⁄4 A

н

∕₅∖

Detail A

(Datum A)

D

 $\underline{4}$ 11

	2	-	▼ 2 x b2 2 x b ⊕ 0.010 @ A(DB ating b1, b b1, b (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) ($\begin{array}{c} c_{1} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{7} \\$	a - 1		l l	1 4	
	MILLIN	IETERS	INC	HES			MILLIN	IETERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.		DIM.	MIN.	MAX.	MIN.	MAX.
А	4.06	4.83	0.160	0.190		D1	6.86	-	0.270	-
A 4	0.00	0.25	0.000	0.010		Е	9.65	10.67	0.380	0.420
A1	0.00	0.25								
b A1	0.51	0.25	0.020	0.039		E1	6.22	-	0.245	-
			0.020 0.020	0.039 0.035		E1 e		- BSC	0.245 0.100	BSC
b	0.51	0.99						- BSC 15.88		- BSC 0.625
b b1	0.51 0.51	0.99 0.89	0.020	0.035		е	2.54		0.100	
b b1 b2	0.51 0.51 1.14	0.99 0.89 1.78	0.020 0.045	0.035		e H	2.54 14.61	15.88	0.100 0.575	0.625
b b1 b2 b3	0.51 0.51 1.14 1.14	0.99 0.89 1.78 1.73	0.020 0.045 0.045	0.035 0.070 0.068		e H L	2.54 14.61 1.78	15.88 2.79	0.100 0.575 0.070	0.625 0.110
b b1 b2 b3 c	0.51 0.51 1.14 1.14 0.38	0.99 0.89 1.78 1.73 0.74	0.020 0.045 0.045 0.015	0.035 0.070 0.068 0.029		e H L L1	2.54 14.61 1.78 - -	15.88 2.79 1.65	0.100 0.575 0.070 -	0.625 0.110 0.066 0.070
b b1 b2 b3 c c1	0.51 0.51 1.14 1.14 0.38 0.38	0.99 0.89 1.78 1.73 0.74 0.58	0.020 0.045 0.045 0.015 0.015	0.035 0.070 0.068 0.029 0.023		e H L L1 L2	2.54 14.61 1.78 - -	15.88 2.79 1.65 1.78	0.100 0.575 0.070 - -	0.625 0.110 0.066 0.070

Α

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Dimensions are shown in millimeters (inches).

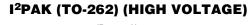
3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.

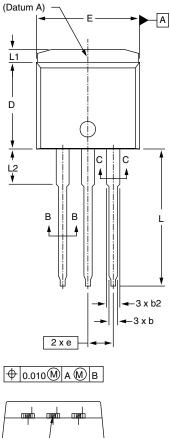
4. Thermal PAD contour optional within dimension E, L1, D1 and E1.

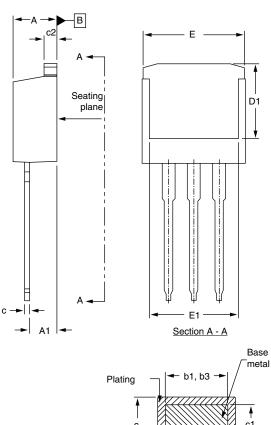
5. Dimension b1 and c1 apply to base metal only.

6. Datum A and B to be determined at datum plane H.

7. Outline conforms to JEDEC outline to TO-263AB.


www.vishay.com


1



Vishay Siliconix

				Г	Bas met
ting	<⊢ b	01, b3	3 →	/	
1					•
c 					c1 ∳
<u>.</u>		(b, b2	» —		
	 ,	(0, 02	-/ -		

Section B - B and C - C Scale: None

	MILLIN	IETERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.06	4.83	0.160	0.190
A1	2.03	3.02	0.080	0.119
b	0.51	0.99	0.020	0.039
b1	0.51	0.89	0.020	0.035
b2	1.14	1.78	0.045	0.070
b3	1.14	1.73	0.045	0.068
с	0.38	0.74	0.015	0.029
c1	0.38	0.58	0.015	0.023
c2	1.14	1.65	0.045	0.065
ECN: S-82 DWG: 597	442-Rev. A, 2 7	27-Oct-08		

	MILLIN	IETERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
D	8.38	9.65	0.330	0.380
D1	6.86	-	0.270	-
E	9.65	10.67	0.380	0.420
E1	6.22	-	0.245	-
е	2.54	BSC	0.100	BSC
L	13.46	14.10	0.530	0.555
L1	-	1.65	-	0.065
L2	3.56	3.71	0.140	0.146

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outmost extremes of the plastic body.

3. Thermal pad contour optional within dimension E, L1, D1, and E1.

4. Dimension b1 and c1 apply to base metal only.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

IRFZ44SPBF IRFZ44STRRPBF IRFZ44STRLPBF IRFZ44S IRFZ44STRL IRFZ44STRR